Как цвет звезд зависит от их температуры. Какие бывают звезды. Почему звезды разного цвета


Всем известны три агрегатных состояния вещества - твёрдое, жидкое и газообразное . Что произойдёт с веществом при последовательном нагревании до высоких температур в замкнутом объёме? - Последовательный переход из одного агрегатного состояния в другое: твёрдое тело - жидкость - газ (вследствие увеличения скорости движения молекул при росте температуры). При дальнейшем нагревании газа при температурах свыше 1 200 ºС начинается распад молекул газа на атомы, а при температурах выше 10 000 ºС - частичный или полный распад атомов газа на составляющие их элементарные частицы - электроны и ядра атомов. Плазма - четвёртое состояние вещества, при котором молекулы или атомы вещества частично или полностью разрушены под действием высоких температур или по другим причинам. 99,9% вещества Вселенной находится в состоянии плазмы.

Звёзды - это класс космических тел, обладающих массой 10 26 -10 29 кг. Звезда - это раскалённое плазменное шарообразное космическое тело, находящееся, как правило, в гидродинамическом и термодинамическом равновесии.

Если равновесие нарушается, звезда начинает пульсировать (изменяются её размеры, светимость и температура). Звезда становится переменной звездой.

Переменная звезда - это звезда, у которой со временем изменяется блеск (видимая яркость на небе). Причинами переменности могут быть физические процессы в недрах звезды. Такие звёзды называют физическими переменными (например, δ Цефея. Похожие на неё переменные звёзды стали называть цефеидами ).


Встречаются и затменно-переменные звёзды, причиной переменности которых являются взаимные затмения их компонентов (например, β Персея - Алголь. Её переменность впервые обнаружил в 1669 г. итальянский экономист и астроном Джеминиано Монтанари) .


Затменно-переменные звёзды всегда являются двойными , т.е. состоят из двух близко расположенных звёзд. Переменные звёзды на звёздных картах обозначаются обведённым кружком:

Не всегда звёзды - шары. Если звезда очень быстро вращается, то её форма не шарообразная. Звезда сжимается с полюсов и становится похожей на мандарин или тыкву (например, Вега, Регул). Если звезда является двойной, то взаимное притяжение этих звёзд друг к другу также влияет на их форму. Они становятся яйцевидными или дынеобразными (например, компоненты двойной звезды β Лиры или Спики):


Звёзды - основные жители нашей Галактики (наша Галактика пишется с большой буквы). В ней насчитывается около 200 миллиардов звёзд. С помощью даже самых больших телескопов удаётся рассмотреть лишь полпроцента от общего количества звёзд Галактики. В звёздах сосредоточено более 95 % всего вещества, наблюдаемого в природе. Остальные 5 % составляют межзвёздный газ, пыль и все несамосветящие тела.

Кроме Солнца, все звёзды находятся от нас так далеко, что даже в самые крупные телескопы они наблюдаются в виде светящихся точек разного цвета и блеска. Ближайшей к Солнцу является система α Центавра, состоящая из трёх звёзд. Одна из них - красный карлик под названием Проксима - является самой близкой звездой. До неё 4,2 светового года. До Сириуса - 8,6 св. лет, до Альтаира - 17 св. лет. До Веги - 26 св. лет. До Полярной звезды - 830 св. лет. До Денеба - 1 500 св. лет. Впервые расстояние до другой звезды (это была Вега) в 1837 году смог определить В.Я. Струве.

Первая звезда, у которой удалось получить изображение диска (и даже каких-то пятен на нём) - Бетельгейзе (α Ориона). Но это потому, что по диаметру Бетельгейзе превосходит Солнце в 500-800 раз (звезда пульсирует). Также было получено изображение диска Альтаира (α Орла), но это потому, что Альтаир - одна из ближайших звёзд.

Цвет звёзд зависит от температуры их внешних слоёв. Диапазон температур - от 2 000 до 60 000 °С. Самые холодные звёзды - красные, а самые горячие - голубые. По цвету звезды можно судить, насколько сильно раскалены её внешние слои.


Примеры красных звёзд: Антарес (α Скорпиона) и Бетельгейзе (α Ориона).

Примеры оранжевых звёзд: Альдебаран (α Тельца), Арктур (α Волопаса) и Поллукс (β Близнецов).

Примеры жёлтых звёзд: Солнце, Капелла (α Возничего) и Толиман (α Центавра).

Примеры желтовато-белых звёзд: Процион (α Малого Пса) и Канопус (α Киля).

Примеры белых звёзд: Сириус (α Большого Пса), Вега (α Лиры), Альтаир (α Орла) и Денеб (α Лебедя).

Примеры голубоватых звёзд: Регул (α Льва) и Спика (α Девы).

Из-за того, что от звёзд приходит очень мало света, человеческий глаз способен различать цветовые оттенки только у самых ярких из них. В бинокль и тем более в телескоп (они улавливают больше света, чем глаз) цвет звёзд становится заметнее.

С глубиной температура нарастает. Даже у самых холодных звёзд в центре температура достигает миллионов градусов. У Солнца в центре около 15 000 000 °С (используют также шкалу Кельвина - шкалу абсолютных температур, но когда речь идёт об очень высоких температурах, разницей в 273 º между шкалами Кельвина и Цельсия можно пренебречь).

Что же так сильно разогревает звёздные недра? Оказывается, там происходят термоядерные процессы , в результате которых выделяется огромное количество энергии. В переводе с греческого "термос" означает тёплый. Основной химический элемент, из которого состоят звёзды - водород. Именно он и является топливом для термоядерных процессов. В этих процессах происходит превращение ядер атомов водорода в ядра атомов гелия, что сопровождается выделением энергии. Количество ядер водорода в звезде при этом уменьшается, а количество ядер гелия - увеличивается. Со временем в звезде синтезируются и другие химические элементы. Все химические элементы, из которых состоят молекулы различных веществ, родились когда-то в недрах звёзд. "Звёзды - это прошлое человека, а человек - это будущее звезды", - так иногда образно говорят.

Процесс испускания звездой энергии в виде электромагнитных волн и частиц называется излучением . Звёзды излучают энергию не только в виде света и тепла, но и других видов излучений - гамма-лучей, рентгеновского, ультрафиолетового, радиоизлучения. Кроме того, звёзды испускают потоки нейтральных и заряженных частиц. Эти потоки образуют звёздный ветер. Звёздный ветер - это процесс истечения вещества из звёзд в космическое пространство. В результате масса звёзд постоянно и постепенно уменьшается. Именно звёздный ветер от Солнца (солнечный ветер) приводит к появлению полярных сияний на Земле и других планетах. Именно солнечный ветер отклоняет хвосты комет в противоположную от Солнца сторону.

Звёзды появляются, естественно, не из пустоты (пространство между звёздами - это не абсолютный вакуум). Материалом служат газ и пыль. Они распределены в космосе неравномерно, образуя бесформенные облака очень маленькой плотности и громадной протяженности - от одного-двух до десятков световых лет. Такие облака называются диффузными газо-пылевыми туманностями. Температура в них очень низка - около -250 °С. Но не в каждой газо-пылевой туманности образуются звёзды. Некоторые туманности могут долгое время существовать без звёзд. Какие же условия необходимы для начала процесса зарождения звёзд? Первое, это масса облака. Если материи недостаточно, то, конечно, звезда не появится. Второе, компактность. В слишком протяжённом и рыхлом облаке не могут начаться процессы его сжатия. Ну, и в-третьих, нужна затравка - т.е. сгусток пыли и газа, который станет потом зародышем звезды - протозвездой. Протозвезда - это звезда на завершающем этапе своего формирования. Если эти условия соблюдаются, то начинается гравитационное сжатие и разогрев облака. Этот процесс заканчивается звездообразованием - появлением новых звёзд. Занимает этот процесс миллионы лет. Астрономами были найдены туманности, в которых процесс звездообразования в самом разгаре - некоторые звёзды уже зажглись, некоторые находятся в виде зародышей - протозвёзд, и туманность ещё сохранилась. Примером служит Большая Туманность Ориона.

Основными физическими характеристиками звезды являются светимость, масса и радиус (или диаметр), которые определяются из наблюдений. Зная их, а также химический состав звезды (что определяется по её спектру), можно рассчитать модель звезды, т.е. физические условия в её недрах, исследовать процессы, которые в ней происходят. Остановимся подробнее на основных характеристиках звёзд.

Масса. Непосредственно оценить массу можно только по гравитационному воздействию звезды на окружающие тела. Массу Солнца, например, определили по известным периодам обращения вокруг него планет. У других звёзд планеты непосредтвенно не наблюдаются. Достоверное измерение массы возможно лишь у двойных звёзд (при этом используется обобщённый Ньютоном III закон Кеплера, н о и тогда погрешность составляет 20-60 % ). Примерно половина всех звёзд в нашей Галактике - двойные. Массы звёзд колеблются от ≈0,08 до ≈100 масс Солнца. Звёзд с массой меньше 0,08 массы Солнца не бывает, они просто не становятся звёздами, а остаются тёмными телами. Звёзды массой более 100 масс Солнца встречаются крайне редко. Большая часть звёзд имеет массы менее 5 масс Солнца. От массы зависит судьба звезды, т.е. тот сценарий, по которому звезда развивается, эволюционирует. Маленькие холодные красные карлики весьма экономно расходуют водород и поэтому их жизнь продолжается сотни миллиардов лет. Продолжительность жизни Солнца - жёлтого карлика - около 10 миллиардов лет (Солнце уже прожило около половины своей жизни). Массивные сверхгиганты расходуют водород быстро и угасают уже через несколько миллионов лет после своего рождения. Чем массивнее звезда, тем короче её жизненный путь.

Возраст Вселенной оценивается в 13,7 миллиардов лет. Поэтому звёзд возрастом более 13,7 миллиардов лет пока не существует.

  • Звёзды с массой 0,08 массы Солнца - это коричневые карлики; их судьба - постоянное сжатие и остывание с прекращением всех термоядерных реакций и превращением в тёмные планетоподобные тела.
  • Звёзды с массой 0,08-0,5 массы Солнца (это всегда красные карлики) после израсходования водорода начинают медленно сжиматься, при этом нагреваясь и становясь белым карликом.
  • Звёзды с массой 0,5-8 масс Солнца в конце жизни превращаются сначала в красных гигантов, а затем в белых карликов. Внешние слои звезды при этом рассеиваются в космическом пространстве в виде планетарной туманности . Планетарная туманность часто имеет форму сферы или кольца.
  • Звёзды с массой 8-10 масс Солнца могут в конце жизни взрываться, а могут стареть спокойно, сначала превращаясь в красных сверхгигантов, а затем в красных карликов.
  • Звёзды с массой более 10 масс Солнца в конце жизненного пути сначала становятся красными сверхгигантами, потом взрываются как сверхновые (сверхновая звезда - это не новая, а старая звезда) и затем превращаются в нейтронные звёзды или становятся чёрными дырами.

Чёрные дыры - это не отверстия в космическом пространстве, а объекты (остатки массивных звёзд) с очень большой массой и плотностью. Чёрные дыры не обладают ни сверхъестественными, ни магическими силами, не являются "монстрами Вселенной". Просто они обладают таким сильным гравитационным полем, что никакое излучение (ни видимое - свет, ни невидимое) не может их покинуть. Поэтому чёрные дыры и не видимы. Однако, их можно обнаружить по их воздействию на окружающие звёзды, туманности. Чёрные дыры - совершенно обычное явление во Вселенной и пугаться их не стоит. В центре нашей Галактики, возможно, имеется сверхмассивная чёрная дыра.

Радиус (или диаметр) . Размеры звёзд варьируют в широких пределах - от нескольких километров (нейтронные звёзды) до 2 000 диаметров Солнца (сверхгиганты). Как правило, чем меньше звезда, тем выше её средняя плотность. У нейтронных звёзд плотность достигает 10 13 г/см 3 ! Напёрсток такого вещества весил бы на Земле 10 миллионов тонн. Зато у сверхгигантов плотность меньше плотности воздуха у поверхности Земли.

Диаметры некоторых звёзд в сравнении с Солнцем:

Сириус и Альтаир в 1,7 раза больше,

Вега в 2,5 раза больше,

Регул в 3,5 раза больше,

Арктур в 26 раз больше,

Полярная в 30 раз больше,

Ригель в 70 раз больше,

Денеб в 200 раз больше,

Антарес в 800 раз больше,

YV Большого Пса в 2 000 раз больше (самая крупная звезда из известных).


Светимость - это полная энергия, излучаемая объектом (в данном случае звёздами) в единицу времени. Светимость звёзд обычно сравнивают со светимостью Солнца (светимость звёзд выражают через светимость Солнца). Сириус, например, в 22 раза излучает больше энергии, чем Солнце (светимость Сириуса равна 22 Солнцам). Светимость Веги - 50 Солнц, а светимость Денеба - 54 000 Солнц (Денеб - это одна из самых мощных звёзд).

Видимая яркость (правильнее, блеск) звезды на земном небе зависит от:

- расстояния до звезды. Если звезда будет приближаться к нам, то её видимая яркость будет постепенно увеличиваться. И наоборот, при удалении звезды от нас её видимая яркость мало-помалу будет уменьшаться. Если взять две одинаковые звезды, то более близкая к нам будет казаться и более яркой.

- от температуры внешних слоёв. Чем сильнее раскалена звезда, тем больше световой энергии она посылает в пространство, и тем ярче она будет казаться. Если звезда остывает, то и видимая её яркость на небе будет уменьшаться. Две звезды одинаковых размеров и на одинаковых расстояниях от нас будут казаться одинаковыми по видимой яркости при условии, что они излучают одинаковое количество световой энергии, т.е. имеют одинаковую температуру внешних слоёв. Если же одна из звёзд холоднее другой, то и казаться она будет менее яркой.

- от размеров (диаметра). Если взять две звезды с одинаковой температурой внешних слоёв (одного цвета) и расположить их на одинаковом расстоянии от нас, то более крупная звезда будет излучать больше световой энергии, а значит, будет казаться на небе более яркой.

- от поглощения света нахоящимися на пути луча зрения облаками космической пыли и газа. Чем толще слой космической пыли, тем больше света от звезды он поглощает, и тем тусклее кажется звезда. Если мы возьмём две одинаковые звезды и поместим перед одной из них газо-пылевую туманность, то как раз эта звезда и будет казаться менее яркой.

- от высоты звезды над горизонтом. Возле горизонта всегда плотная дымка, которая поглощает часть света от звёзд. Возле горизонта (вскоре после восхода или незадолго перед заходом) звёзды всегда выглядят более тусклыми, чем когда они над головой.

Очень важно не путать понятия "казаться" и "быть". Звезда может быть очень яркой сама по себе, но казаться тусклой из-за различных причин: из-за большого расстояния до неё, из-за маленьких размеров, из-за поглощения её света космической пылью или пылью в атмосфере Земли. Поэтому, когда говорят о яркости звезды на земном небе, употребляют словосочетание "видимая яркость" или "блеск".


Как уже говорилось, существуют двойные звёзды. Но бывают и тройные (например, α Центавра), и четверные (например, ε Лиры), и пятерные, и шестерные (например, Кастор) и т.д. Отдельные звёзды в звёздной системе называют компонентами . Звёзды с числом компонентов более двух называют кратными звёздами. Все компоненты кратной звезды связаны силами взаимного тяготения (образуют систему звёзд) и движутся по сложным траекториям.

Если компонентов много, то это уже не кратная звезда, а звёздное скопление . Различают шаровые и рассеянные звёздные скопления. Шаровые скопления содержат много старых звёзд и являются более пожилыми, нежели скопления рассеянные, содержащие много молодых звёзд. Шаровые скопления довольно устойчивы, т.к. звёзды в них находятся на небольших расстояниях друг от друга и силы взаимного притяжения между ними намного больше, чем между звёздами рассеянных скоплений. Рассеянные скопления со временем ещё больше рассеиваются.

Рассеянные скопления, как правильно, располагаются на полосе Млечного Пути или поблизости. Наоборот, шаровые скопления располагаются на звёздном небе в стороне от Млечного Пути.

Некоторые звёздные скопления можно увидеть на небе даже невооружённым глазом. Например, рассеянные скопления Гиады и Плеяды (М 45) в Тельце, рассеянное скопление Ясли (М 44) в Раке, шаровое скопление М 13 в Геркулесе. Довольно много их видно в бинокль.

Разноцветные звезды на небе. Снимок с усиленными цветами

Цветовая палитра звезд широка. Голубые, желтые и красные — оттенки видны даже сквозь атмосферу , обычно искажающую очертания космических тел. Но откуда берется цвет звезды?

Происхождение цвета звезд

Секрет разноцветности звезд стал важным орудием астрономов — цвет светил помог им узнать поверхности звезд. В основу легло примечательное природное явление — соотношение между вещества и цветом излучаемого им света.

Наблюдения на эту тему вы уже наверняка сделали сами. Нить маломощных 30-ваттных лампочек горит оранжевым светом — а когда напряжение в сети падает, нить накала едва тлеет красным. Более сильные лампочки светятся желтым или даже белым цветом. А сварочный электрод во время работы и кварцевая лампа светятся голубым. Однако смотреть на них ни в коем случае не стоит — их энергия настолько велика, что может с легкостью повредить сетчатку глаза.

Соответственно, чем горячее предмет, тем ближе его цвет его свечения к голубому — а чем холоднее, тем ближе к темно-красному. Звезды не стали исключением: такой же принцип действует и на них. Влияние звезды на ее цвет очень незначительное — температура может скрывать отдельные элементы, ионизируя их.

Но именно излучения звезды помогает выяснить ее состав. Атомы каждого вещества имеют свою уникальную пропускную способность. Световые волны одних цветов беспрепятственно проходят сквозь них, когда другие останавливаются — собственно, по блокированным диапазонам света ученые и определяют химические элементы.

Механизм «окрашивания» звезд

Какова физическая подоплека этого явления? Температура характеризуется скоростью движения молекул вещества тела — чем она выше, тем быстрее они движутся. Это влияет на длину , которые проходят сквозь вещество. Горячая среда укорачивает волны, а холодная — наоборот, удлиняет. А видимый цвет светового луча как раз определяется длиной световой волны: короткие волны отвечают за синие оттенки, а длинные — за красные. Белый цвет получается в итоге наложения разноспектральных лучей.

Звезды, которые мы наблюдаем, различаются как по цвету, так и по яркости свечения. Яркость звезды зависит как от ее массы, так и от расстояния до нее. А цвет свечения зависит от температуры на ее поверхности. Самые «холодные» звезды имеют красный цвет. А самые горячие – голубоватый оттенок. Белые и голубые звезды - наиболее горячие, их температура выше, чем температура Солнца. Наша звезда Солнце относится к классу желтых звезд.

Сколько же звезд на небе?
Подсчитать даже хотя бы примерно количество звезд в известной нам части Вселенной практически невозможно. Ученые могут лишь сказать, что в нашей Галактике, которая называется «Млечный Путь», может быть около 150 миллиардов звезд. А ведь есть еще и другие галактики! Зато гораздо более точно людям известно количество звезд, которые можно увидеть с поверхности Земли невооруженным глазом. Таких звезд около 4,5 тысяч.

Как рождаются звезды?
Если звезды зажигают, значит это кому-нибудь нужно? В бескрайнем космическом пространстве всегда есть молекулы простейшего вещества во Вселенной – водорода. Где-то водорода меньше, где-то больше. Под действием сил взаимного притяжения молекулы водорода притягиваются друг к другу. Эти процессы притяжения могут длиться очень долго – миллионы и даже миллиарды лет. Но рано или поздно молекулы водорода притягиваются настолько близко друг к другу, что образуется газовое облако. При дальнейшем притяжении в центре такого облака начинает повышаться температура. Пройдут еще миллионы лет, и температура в газовом облаке может подняться настолько, что начнется реакция термоядерного синтеза – водород начнет превращаться в гелий и на небосводе появится новая звезда. Любая звезда – это раскаленный газовый шар.

Продолжительность жизни у звезд существенно различается. Ученые выяснили, что чем больше масса новорожденной звезды, тем меньше срок ее жизни. Срок жизни звезды может составлять как сотни миллионов лет, так и миллиарды лет.

Световой год
Световой год – это расстояние, которое преодолевает за год луч света, летящий со скоростью 300 тысяч километров в секунду. А в году 31536000 секунд! Так вот, от ближайшей к нам звезды под названием Проксима Центавра луч света летит более четырех лет (4.22 световых года)! Эта звезда находится от нас в 270 тысяч раз дальше, чем Солнце. А остальные звезды находятся гораздо дальше - в десятках, сотнях, тысячах и даже в миллионах световых лет от нас. Именно поэтому звезды кажутся нам такими маленькими. И даже в самый мощный телескоп они, в отличие от планет, всегда видны, как точки.

Что такое «созвездие»?
С древних времен люди смотрели на звезды и видели в причудливых фигурах, которые образуют группы ярких звезд, образы животных и мифических героев. Такие фигуры на небосводе стали называть созвездиями. И, хотя на небосводе звезды, включаемые людьми в то или иное созвездие, зрительно находятся рядом друг с другом, в космическом пространстве эти звезды могут находиться на значительном удалении друг от друга. Самыми известными созвездиями являются Большая и Малая Медведицы. Дело в том, что в созвездие Малая Медведица входит Полярная звезда, на которую указывает северный полюс нашей планеты Земля. И зная, как найти на небосводе Полярную звезду, любой путешественник и мореплаватель сможет определить, где находится север и сориентироваться на местности.


Сверхновые звезды
Некоторые звезды в конце срока своей жизни вдруг начинают светиться в тысячи и миллионы раз ярче, чем обычно, и выбрасывают в окружающее пространство огромные массы вещества. Принято говорить, что происходит взрыв сверхновой звезды. Свечение сверхновой постепенно затухает и в конце концов на месте такой звезды остается только светящееся облако. Подобная вспышка сверхновой наблюдалась древними астрономами Ближнего и Дальнего Востока 4 июля 1054 года. Затухание этой сверхновой длилось 21 месяц. Сейчас на месте этой звезды находится известная многим любителям астрономии Крабовидная туманность.

Подводя итог данному разделу, отметим, что

V. Виды звезд

Основная спектральная классификация звёзд:

Коричневые карлики

Коричневые карлики это тип звезд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд. Однако в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звезд подобного типа. Их спектральный класс М - T. В теории выделяется ещё один класс - обозначаемый Y.

Белые карлики

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга - Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара - как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера - Волкова - как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями - вспышками сверхновых.
Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

Красные гиганты

Красные гиганты и сверхгиганты - это звёзды с довольно низкой эффективной температурой (3000 - 5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов?3m-0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.

Переменные звёзды

Переменная звезда - это звезда, за всю историю наблюдения которой хоть один раз менялся блеск. Причин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать, также блеск может измениться, если свет от звезды пройдет сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звезд принято следующее деление:
Эруптивные переменные звёзды - это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
Пульсирующие переменные звёзды - это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
Вращающиеся переменные звёзды - это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
Катаклизмические (взрывные и новоподобные) переменные звёзды . Переменности этих звёзд вызвана взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
Затменно-двойные системы.
Оптические переменные двойные системы с жёстким рентгеновским излучением
Новые типы переменных - типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже изданные классы.

Новые

Новая звезда - тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m): за несколько дней до максимума звезда лишь на 2m слабее. Количество таких дней определяет, к какому классу новых относится звезда:
Очень быстрые, если это время (обозначаемое как t2) меньше 10 дней.
Быстрые - 11 Очень медленные: 151 Предельно медленные, находящие вблизи максимума годами.

Существует зависимость максимума блеска новой от t2. Иногда эту зависимость используют для определения расстояния до звезды. Максимум вспышки в разных диапазонах ведет себя по-разному: когда в видимом диапазоне уже наблюдается спад излучения, в ультрафиолете все ещё продолжается рост. Если наблюдается вспышка и в инфракрасном диапазоне, то максимум будет достигнут только после того, как блеск в ультрафиолете пойдет на спад. Таким образом, болометрическая светимость во время вспышки довольно долго остается неизменной.

В нашей Галактике можно выделить две группы новых: новые диска (в среднем они ярче и быстрее), и новые балджа, которые немного медленнее и, соответственно, немного слабее.

Сверхновые

Сверхновые звёзды - звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет - то I типа

Гиперновые

Гиперновая - коллапс исключительно тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; другими словами, это очень большая сверхновая. С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила взрыва превышала мощность взрыва обычной сверхновой примерно в 100 раз, а энергия взрыва превышала 1046 джоулей. К тому же многие из этих взрывов сопровождались очень сильными гамма-всплесками. Интенсивное исследование неба нашло несколько аргументов в пользу существования гиперновых, но пока что гиперновые являются гипотетическими объектами. Сегодня термин используется для описания взрывов звёзд с массой от 100 до 150 и более масс Солнца. Гиперновые теоретически могли бы создать серьёзную угрозу Земле вследствие сильной радиоактивной вспышки, но в настоящее время вблизи Земли нет звёзд, которые могли бы представлять такую опасность. По некоторым данным, 440 миллионов лет назад имел место взрыв гиперновой звезды вблизи Земли. Вероятно, короткоживущий изотоп никеля 56Ni попал на Землю в результате этого взрыва.

Нейтронные звёзды

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Люблю смотреть на звездное небо. Это очень увлекательно. Когда падает звездочка, то всегда загадываю желание. Лично для меня каждая звезда – это загадочный и неизведанный мир. Ученые доказывают, что кроме Земли во всей Галактике нет жизни. Так ли это… Возможно, на какой-то звездочке и существует что-то. Их миллионы и все так далеко от нас.

Какие бывают звезды по размеру

Каждый человек знает, что такое звезда. Мы с Земли видим маленькое яркое небесное тело. На самом же деле, это очень большие шары, которые состоят и разных газов . Доказано, что в их ядре температура около 6 млн градусов . А в основе звезды лежат в одород (90 %) и гелий (чуть меньше 10% ). По сути, звезда – это тоже Солнце, только поменьше в размерах (или больше). Астрономы часто говорят на них «огненные шары».

Если посмотреть в телескоп, то видно, что каждая звезда разная по размерам, форме и окружена разной туманностью. По размерам звезды делят на три типа:

  • карлики – их большинство. Они намного меньше Солнца , поэтому экономят свою энергию и могут светить на протяжении десятков миллиардов лет;
  • гиганты – их масса примерно такая же, как и Солнца . Менее яркие, чем карлики;
  • сверхгиганты – сравнительно редко встречаются в Солнечной системе. Их диаметр больше 1 млрд. км. Такие звезды в 1 00 раз больше от Солнца .

Классификация звезд по цвету

А вы знаете, что цвет звезды непосредственно зависит от ее температур ы. Самую низкую температуру имеют красные звезды, самую высокую – синие:

  • красные звезды – температура 2,500 -3,500 °C. В основном это карлики, в меньшей мере - гиганты. Относят к холодным звездам;
  • оранжевые – 3,500 – 5000 °C. Тоже холодные звезды, карлики;
  • коричневые 5000 -6000 °C. На них часто говорят планеты, в основном карлики;
  • желтые – 6000 – 7,500 °C. Их относят к солнечному типу. Это звезды-гиганты;
  • белые – 7,500 -10000 °C. Относятся к ряду остывающих;
  • голубые – 10000 – 28000 °C. Имеют голубое свечение. Одни из самых горячих;
  • синие – 28000 – 50000 °C. Самые горячие звезды.

Это нам с Земли кажется, что все звезды практически одинаковые. И мы думаем, что они отличаются лишь яркостью свечения. На самом же деле - все звезды разные по размерах и имеют разную температуру .

Карпов Дмитрий

Это исследовательская работа ученика 1 класса МОУ СОШ №25.

Цель исследования : выяснить почему звёзды на небе бывают разных цветов.
Методы и приемы: наблюдения, эксперимент, сравнение и анализ результатов наблюдений, экскурсия в планетарий, работа с различными источниками информации.

Полученные данные: Звезды - раскаленные газовые шары. Ближайшая к нам звезда - это Солнце. Все звезды разного цвета. Цвет звезды зависит от температуры на ее поверхности. Благодаря эксперименту, мне удалось выяснить, что нагреваемый металл сначала начинает светиться красным светом, потом желтым и, наконец, белым при увеличении температуры. Также и со звездами. Красные - самые холодные, а белые (или даже голубые!) - самые горячие. Тяжелые звезды - горячие и белые, легкие, немассивные - красные и относительно холодные. По цвету звезды можно определить и ее возраст. Молодые звезды – самые горячие. Они светят белым и голубым светом. Старые, остывающие звезды, излучают красный свет. А желтым светом светятся звезды среднего возраста. Энергия, излучаемая звездами, настолько огромна, что мы можем их видеть на тех далеких расстояниях, на которые они от нас удалены: десятки, сотни, тысячи световых лет!
Выводы:
1. Звезды разноцветны. Цвет звезды зависит от температуры на ее поверхности.

2. По цвету звезды мы можем определить её возраст, массу.

3. Звезды мы можем видеть благодаря огромной энергии, излучаемой ими.

Скачать:

Предварительный просмотр:

XIV городская научно-практическая конференция школьников

«Первые шаги в науку»

Почему звезды разного цвета?

Г. Сочи.

Руководитель: Мухина Марина Викторовна, учитель начальных классов

МОУ СОШ №25

г. Сочи

2014

ВВЕДЕНИЕ

Звездами можно любоваться вечно, они загадочны и привлекательны. Еще с древних времен люди придавали большое значение этим небесным телам. Астрономы от древности и до наших дней заявляют, что расположение звезд на небе особенным образом влияет чуть ли ни на все стороны человеческой жизни. По звездам определяют погоду, составляют гороскопы и предсказания, находят дорогу в открытом море заблудившиеся корабли. Какие они на самом деле, эти сияющие светящиеся точки?

Тайна звездного неба интересна всем ребятам без исключения. Ученые и астрономы провели много исследований, раскрыли много тайн. Про звезды написано много книг, снято много познавательных фильмов, и все же, многие ребята не знают всех тайн звездного неба.

Для меня звездное небо остается загадкой. Чем больше я смотрел на звезды, тем больше вопросов у меня появлялось. Одним из которых был: какого цвета эти мерцающие, завораживающие звезды.

Цель исследования: объяснить, почему звёзды на небе разного цвета.

Задачи, которые я перед собой ставил: 1. поискать ответ на вопрос, беседуя со взрослыми, читая энциклопедии, книги, материалы ИНТЕРНЕТА;

2. провести наблюдения за звездами невооруженным взглядом и с помощью телескопа;

3. с помощью эксперимента доказать, что цвет звезды зависит от её температуры;

4. рассказать о разнообразии звёздного мира своим одноклассникам.

Объект исследования – небесные тела (звезды).

Предмет исследования – параметры звезд.

Методы исследования :

  • Чтение специальной литературы и просмотр научно-популярных программ;
  • Исследование звездного неба с применением телескопа и специального программного обеспечения;
  • Эксперимент по изучению зависимости цвета объекта от его температуры.

Результатом моей работы является возникновения интереса к данной теме у моих одноклассников.

Глава 1. Что такое звезды?

Я часто смотрел на звездное небо, состоящее из множества светящихся точек. Особенно хорошо звезды видны по ночам и в безоблачную погоду. Они всегда притягивали мое внимание своим особым, завораживающим сиянием. Астрологи полагают, что они могут влиять на судьбу и на будущее человека. Но вот на вопрос, что они собой представляют, могут ответить немногие.

Изучив справочную литературу, мне удалось выяснить, что звезда – это небесное тело, в котором идут термоядерные реакции, представляющее собой массивный светящийся газовый шар.

Звезды – наиболее распространенные объекты во вселенной. Количество существующих звезд очень сложно представить. Оказывается, только в нашей галактике более 200 миллиардов звезд, а во вселенной громадное число галактик. Невооружённым взглядом на небе видно около 6000 звёзд, по 3000 в каждом полушарии. Звезды находятся от Земли на огромных расстояниях.

Самая известная звезда, которая находится ближе всего к нам – это, конечно же, Солнце. Именно поэтому нам кажется, что оно очень большое по сравнению с остальными светилами. Днём оно своим светом затмевает все остальные звёзды, поэтому мы их не видим. Если Солнце находится от Земли на расстоянии 150 миллионов километров, то другая звезда, которая находится ближе остальных, Кентавра, расположена уже в 42000 миллиардов километров от нас.

Как появилось Солнце? Изучив литературу, я понял, что подобно остальным звёздам, Солнце появилось из скопления космического газа и пыли. Такое скопление называется туманностью. Газ и пыль сжались в плотную массу, которая нагрелась до температуры в 15 000 000 кельвинов. Такая температура держится в центре Солнца.

Таким образом, мне удалось выяснить, что звезды – это газовые шары во Вселенной. Но почему тогда они светятcя разными цветами?

Глава 2. Температура и цвет звезд

Сначала я решил найти самые яркие звёзды. Я предположил, что самая яркая звезда – это Солнце. В связи с отсутствием специальных приборов, светимость звезд я определял невооружённым взглядом, затем с помощью своего телескопа. В телескоп звезды видны как точки той или иной степени яркости без каких–либо деталей. Солнце наблюдать можно только со специальными фильтрами. Но не все звезды можно увидеть, даже в телескоп и тогда я обратился к информационным источникам.

Я сделал следующие выводы: самые яркие звезды: 1. Звезда-гигант R136a12 (область звездообразования 30 Золотой Рыбы ) ; 2. Звезда-гигант VY СМа (в созвездии Большого Пса) 3. Денеб (в созвездии α Лебедь); 4. Ригель (в созвездии β Ориона ); 5. Бетельгейзе (в созвездии α Ориона). Названия звезд мне помог определить папа с помощью программы Star Rover для iPhone. При этом, первые три из звезд имеют голубоватое свечение, четвертая – бело-голубое, а пятая – красновато-оранжевое. Открытие самой яркой звезды ученые сделали с помощью космического телескопа НАСА «Хаббл».

В ходе своего исследования я заметил, что яркость звезд зависит от их цвета. Но почему все звёзды разные?

Давайте рассмотрим Солнце – звезду, видимую невооруженным взглядом. С самого раннего детства мы изображаем её желтым цветом, потому что эта звезда на самом деле желтая. Я стал изучать свойства этой звезды. Температура на её поверхности около 6000 градусов. В энциклопедиях и в ИНТЕРНЕТЕ я узнал и о других звездах. Оказалось, что все звезды разного цвета. Одни из них белые, другие голубые, третьи оранжевые. Есть белые и красные звезды. Оказывается, цвет звезды зависит от температуры на ее поверхности. Самые горячие звезды кажутся нам белыми и голубыми. Температура на их поверхности от 10 до 100 000 градусов. Звезда средней температуры имеет желтый или оранжевый цвет. Самые холодные из звезд – красные. Температура на их поверхности около 3 000 градусов. И эти звезды во много раз горячее, чем пламя костра.

Я с родителями провел такой эксперимент: мы нагрели на газовой горелке железную спицу. Сначала спица была серого цвета. После нагревания она накалилась и стала красной. Температура у неё увеличилась. После охлаждения спица снова стала серого цвета. Я сделал вывод: что при увеличении температуры изменяется цвет звезды. Причем у звезд все не так, как у людей. Люди обычно краснеют, когда им жарко, и синеют, когда холодно. А вот у звезд все наоборот: чем горячее звезда, тем она голубее, а чем холоднее, тем

Как известно, нагреваемый металл сначала начинает светиться красным светом, потом желтым и, наконец, белым при увеличении температуры. Также и со звездами. Красные - самые холодные, а белые (или даже голубые!) - самые горячие.

Глава 3. Масса звезды и её цвет. Возраст звезды.

Когда мне было 6 лет, мы с мамой в городе Омске ходили в планетарий. Там я узнал, что все звезды бывают разных размеров. Одни большие, другие маленькие, одни тяжелее, другие легче. С помощью взрослых я попробовал выстроить изучаемые звезды от самой легкой до самой тяжелой. И вот что я заметил! Оказалось, голубые тяжелее белых, белые - желтых, желтые - оранжевых, оранжевые - красных.

По цвету звезды можно определить и ее возраст. Молодые звезды – самые горячие. Они светят белым и голубым светом. Старые, остывающие звезды, излучают красный свет. А желтым светом светятся звезды среднего возраста.

Энергия, излучаемая звездами, настолько огромна, что мы можем их видеть на тех далеких расстояниях, на которые они от нас удалены: десятки, сотни, тысячи световых лет!

Чтобы мы смогли увидеть звезду, ее свет должен пройти воздушные слои атмосферы Земли. Колеблющиеся слои воздуха несколько преломляют прямой поток света, и нам кажется, что звезды мерцают. На самом же деле от звезд идет прямой беспрерывный свет.

Солнце не самая большая звезда, оно относится к звёздам, названным Жёлтыми Карликами. Когда зажглась эта звезда, она состояла из водорода. Но под действием термоядерных реакций это вещество начало превращаться в гелий. За время существования этого светила (около 5 миллиардов лет) сгорела примерно половина водорода. Таким образом, Солнцу осталось «жить» столько же, сколько оно уже существует. Когда водород практически весь сгорит, эта звезда станет больше по размеру и превратится в Красного Гиганта. Это очень сильно повлияет на Землю. На нашей планете наступит невыносимая жара, океаны выкипят, жизнь станет невозможна.

ЗАКЛЮЧЕНИЕ

Таким образом, в результате моего исследования я и мои одноклассники получили новые знания о том, что такое звезды, а также от чего зависит температура и цвет звезд.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.







2024 © winplast.ru.