Закон гаусса формула. Применение теоремы Гаусса для расчета электрических полей. Поток вектора индукции электростатического поля


Закон взаимодействия электрических зарядов - закон Кулона - можно сформулировать иначе, в виде так называемой теоремы Гаусса. Теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Доказательство основывается на обратной пропорциональности силы взаимодействия двух точечных зарядов квадрату расстояния между ними. Поэтому теорема Гаусса применима к любому физическому полю, где действует закон обратных квадратов и принцип суперпозиции, например к гравитационному полю.

Рис. 9. Линии напряженности электрического поля точечного заряда, пересекающие замкнутую поверхность X

Для того чтобы сформулировать теорему Гаусса, вернемся к картине силовых линий электрического поля неподвижного точечного заряда. Силовые линии уединенного точечного заряда представляют собой симметрично расположенные радиальные прямые (рис. 7). Можно провести любое число таких линий. Обозначим полное их число через Тогда густота силовых линий на расстоянии от заряда, т. е. число линий, пересекающих единицу поверхности сферы радиуса равна Сравнивая это соотношение с выражением для напряженности поля точечного заряда (4), видим, что густота линий пропорциональна напряженности поля. Мы можем сделать эти величины численно равными, надлежащим образом выбрав полное число силовых линий N:

Таким образом, поверхность сферы любого радиуса, охватывающей точечный заряд пересекает одно и то же число силовых линий. Это значит, что силовые линии непрерывны: в промежутке между любыми двумя концентрическими сферами разных радиусов ни одна из линий не обрывается и не добавляется ни одной новой. Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает любую замкнутую поверхность (рис. 9), охватывающую заряд

Силовые линии имеют направление. В случае положительного заряда они выходят наружу из окружающей заряд замкнутой поверхности, как показано на рис. 9. В случае отрицательного заряда они входят внутрь поверхности. Если число выходящих линий считать положительным, а входящих - отрицательным, то в формуле (8) можно опустить знак модуля у заряда и записать ее в виде

Поток напряженности. Введем теперь понятие потока вектора напряженности поля через поверхность. Произвольное поле можно мысленно разбить на малые области, в которых напряженность меняется по модулю и направлению столь мало, что в пределах этой области поле можно считать однородным. В каждой такой области силовые линии представляют собой параллельные прямые и имеют постоянную густоту.

Рис. 10. К определению потока вектора напряженности поля через площадку

Рассмотрим, какое число силовых линий пронизывает малую площадку направление нормали к которой образует угол а с направлением линий напряженности (рис. 10). Пусть - проекция на плоскость, перпендикулярную силовым линиям. Так как число линий, пересекающих одинаково, а густота линий, согласно принятому условию, равна модулю напряженности поля Е, то

Величина а представляет собой проекцию вектора Е на направление нормали к площадке

Поэтому число силовых линий пересекающих площадку равно

Произведение носит название потока напряженности поля через поверхность Формула (10) показывает, что поток вектора Е через поверхность равен числу силовых линий, пересекающих эту поверхность. Отметим, что поток вектора напряженности, как и число проходящих через поверхность силовых линий, есть скаляр.

Рис. 11. Поток вектора напряженности Е через площадку

Зависимость потока от ориентации площадки относительно силовых линий иллюстрируется рис.

Поток напряженности поля через произвольную поверхность представляет собой сумму потоков через элементарные площадки, на которые можно разбить эту поверхность. В силу соотношений (9) и (10) можно утверждать, что поток напряженности поля точечного заряда через любую охватывающую заряд замкнутую поверхность 2 (см. рис. 9), как число выходящих из этой поверхности силовых линий равен При этом вектор нормали к элементарным площадкам замкнутой поверхности следует направлять наружу. Если заряд внутри поверхности отрицателен, то силовые линии входят внутрь этой поверхности и связанный с зарядом поток вектора напряженности поля также отрицателен.

Если внутри замкнутой поверхности находится несколько зарядов, то в соответствии с принципом суперпозиции будут складываться потоки напряженностей их полей. Полный поток будет равен где под следует понимать алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Если внутри замкнутой поверхности электрических зарядов нет или их алгебраическая сумма равна нулю, то полный поток напряженности поля через эту поверхность равен нулю: сколько силовых линий входит в объем, ограниченный поверхностью, столько же и выходит наружу.

Теперь можно окончательно сформулировать теорему Гаусса: поток вектора напряженности электрического поля Е в вакууме через любую замкнутую поверхность пропорционален полному заряду находящемуся внутри этой поверхности. Математически теорема Гаусса выражается той же формулой (9), где под понимается алгебраическая сумма зарядов. В абсолютной электростатической

системе единиц СГСЭ коэффициент и теорема Гаусса записывается в виде

В СИ и поток напряженности через замкнутую поверхность выражается формулой

Теорема Гаусса широко используется в электростатике. В некоторых случаях с ее помощью легко рассчитываются поля, создаваемые симметрично расположенными зарядами.

Поля симметричных источников. Применим теорему Гаусса для расчета напряженности электрического поля равномерно заряженного по поверхности шара радиуса . Будем для определенности считать его заряд положительным. Распределение зарядов, создающих поле, обладает сферической симметрией. Поэтому такой же симметрией обладает и поле. Силовые линии такого поля направлены по радиусам, а модуль напряженности одинаков во всех точках, равноудаленных от центра шара.

Для того чтобы найти напряженность поля на расстоянии от центра шара, проведем мысленно концентрическую с шаром сферическую поверхность радиуса Поскольку во всех точках этой сферы напряженность поля направлена перпендикулярно ее поверхности и одинакова по модулю, то поток напряженности просто равен произведению напряженности поля на площадь поверхности сферы:

Но эту величину можно выразить и с помощью теоремы Гаусса. Если нас интересует поле вне шара, т. е. при то, например, в СИ и, сравнивая с (13), находим

В системе единиц СГСЭ, очевидно,

Таким образом, снаружи шара напряженность поля такая же, как у поля точечного заряда помещенного в центр шара. Если же интересоваться полем внутри шара, т. е. при то так как весь распределенный по поверхности шара заряд находится вне мысленно проведенной нами сферы. Поэтому поле внутри шара отсутствует:

Аналогично с помощью теоремы Гаусса можно рассчитать электростатическое поле, создаваемое бесконечной заряженной

плоскостью с плотностью постоянной во всех точках плоскости. По соображениям симметрии можно считать, что силовые линии перпендикулярны плоскости, направлены от нее в обе стороны и имеют всюду одинаковую густоту. Действительно, если бы густота силовых линий в разных точках была различной, то перемещение заряженной плоскости вдоль самой себя приводило бы к изменению поля в этих точках, что противоречит симметрии системы - такой сдвиг не должен изменять поле. Другими словами, поле бесконечной равномерно заряженной плоскости является однородным.

В качестве замкнутой поверхности для применения теоремы Гаусса выберем поверхность цилиндра, построенного следующим образом: образующая цилиндра параллельна силовым линиям, а основания имеют площади параллельны заряженной плоскости и лежат по разные стороны от нее (рис. 12). Поток напряженности поля через боковую поверхность равен нулю, поэтому полный поток через замкнутую поверхность равен сумме потоков через основания цилиндра:

Рис. 12. К вычислению напряженности поля равномерно заряженной плоскости

По теореме Гаусса этот же поток определяется зарядом той части плоскости, которая лежит внутри цилиндра, и в СИ равен Сравнивая эти выражения для потока, находим

В системе СГСЭ напряженность поля равномерно заряженной бесконечной плоскости дается формулой

Для равномерно заряженной пластины конечных размеров полученные выражения приближенно справедливы в области, находящейся достаточно далеко от краев пластины и не слишком далеко от ее поверхности. Вблизи краев пластины поле уже не будет однородным и его силовые линии искривляются. На очень больших по сравнению с размерами пластины расстояниях поле убывает с расстоянием так же, как поле точечного заряда.

В качестве других примеров полей, создаваемых симметрично распределенными источниками, можно привести поле равномерно заряженной по длине бесконечной прямолинейной нити, поле равномерно заряженного бесконечного кругового цилиндра, поле шара,

равномерно заряженного по объему, и т. п. Теорема Гаусса позволяет во всех этих случаях легко рассчитывать напряженность поля.

Теорема Гаусса дает связь между полем и его источниками, в некотором смысле обратную той, что дает закон Кулона, который позволяет определить электрическое поле по заданным зарядам. С помощью теоремы Гаусса можно определить суммарный заряд в любой области пространства, в которой известно распределение электрического поля.

В чем различие концепций дальнодействия и близкодействия при описании взаимодействия электрических зарядов? В какой мере эти концепции можно применить к гравитационному взаимодействию?

Что такое напряженность электрического поля? Что имеют в виду, когда ее называют силовой характеристикой электрического поля?

Каким образом по картине силовых линий можно судить о направлении и модуле напряженности поля в некоторой точке?

Могут ли силовые линии электрического поля пересекаться? Аргументируйте свой ответ.

Нарисуйте качественную картину силовых линий электростатического поля двух зарядов таких, что .

Поток напряженности электрического поля через замкнутую поверхность выражается разными формулами (11) и (12) в системах единиц ГСЭ и в СИ. Как это увязать с геометрическим смыслом потока, определяемого числом силовых линйй, пересекающих поверхность?

Как использовать теорему Гаусса для нахождения напряженности электрического поля при симметричном распределении создающих его зарядов?

Как применить формулы (14) и (15) к вычислению напряженности поля шара с отрицательным зарядом?

Теорема Гаусса и геометрия физического пространства. Посмотрим на доказательство теоремы Гаусса с несколько иной точки зрения. Вернемся к формуле (7), из которой был сделан вывод о том, что через любую окружающую заряд сферическую поверхность проходит одно и то же число силовых линий. Этот вывод связан с тем, что происходит сокращение в знаменателях обеих частей равенства.

В правой части возникло из-за того, что сила взаимодействия зарядов, описываемая законом Кулона, обратно пропорциональна квадрату расстояния между зарядами. В левой части появление связано с геометрией: площадь поверхности сферы пропорциональна квадрату ее радиуса.

Пропорциональность площади поверхности квадрату линейных размеров - это отличительная черта евклидовой геометрии в трехмерном пространстве. Действительно, пропорциональность площадей именно квадратам линейных размеров, а не какой-либо иной целой степени, характерно для пространства

трех измерений. То, что этот показатель степени равен точно двум, а не отличается от двойки пусть даже на ничтожно малую величину, свидетельствует о неискривленности этого трехмерного пространства, т. е. о том, что его геометрия именно евклидова.

Таким образом, теорема Гаусса - это проявление свойств физического пространства в фундаментальном законе взаимодействия электрических зарядов.

Идея о тесной связи фундаментальных законов физики со свойствами пространства высказывалась многими выдающимися умами еще задолго до установления самих этих законов. Так, И. Кант за три десятилетия до открытия закона Кулона писал о свойствах пространства: «Трехмерность происходит, по-видимому, оттого, что субстанции в существующем мире действуют одна на другую таким образом, что сила действия обратно пропорциональна квадрату расстояния».

Закон Кулона и теорема Гаусса фактически представляют один и тот же закон природы, выраженный в различных формах. Закон Кулона отражает концепцию дальнодействия, в то время как теорема Гаусса исходит из представления о силовом поле, заполняющем пространство, т. е. из концепции близкодействия. В электростатике источником силового поля является заряд, и связанная с источником характеристика поля - поток напряженности - не может измениться в пустом пространстве, где нет других зарядов. Поскольку поток можно наглядно представлять себе как совокупность силовых линий поля, то неизменность потока проявляется в непрерывности этих линий.

Теорема Гаусса, основанная на обратной пропорциональности взаимодействия квадрату расстояния и на принципе суперпозиции (аддитивности взаимодействия), применима к любому физическому полю, в котором действует закон обратных квадратов. В частности, она справедлива и для гравитационного поля. Ясно, что это не просто случайное совпадение, а отражение того, что и электрическое, и гравитационное взаимодействия разыгрываются в трехмерном евклидовом физическом пространстве.

На какой особенности закона взаимодействия электрических зарядов основана теорема Гаусса?

Докажите, основываясь на теореме Гаусса, что напряженность электрического поля точечного заряда обратно пропорциональна квадрату расстояния. Какие свойства симметрии пространства используются в этом доказательстве?

Каким образом геометрия физического пространства отражается в законе Кулона и теореме Гаусса? Какая особенность этих законов свидетельствует об евклидовом характере геометрии и трехмерности физического пространства?

Для полноценного описания электростатического поля заданной системы зарядов в вакууме достаточно экспериментально подтвержденного закона Кулона и принципа суперпозиции. Но при этом существует возможность свойства электростатического поля охарактеризовать в ином обобщенном виде, не опираясь на утверждения касательно кулоновского поля точечного заряда.

Зададим новую физическую величину, описывающую электрическое поле – поток Φ вектора напряженности электрического поля. Предположим, что в пространстве, содержащем заданное электрическое поле, имеется некая достаточно малая площадка Δ S .

Определение 1

Элементарный поток вектора напряженности (через площадку S) – это физическая величина, равная произведению модуля вектора E → , площади Δ S и косинуса угла α между вектором и нормалью к площадке:

Δ Φ = E Δ S cos α = E n Δ S.

В данной формуле E n является модулем нормальной составляющей поля E → .

Рисунок 1 . 3 . 1 . Иллюстрация элементарного потока Δ Φ .

Пример 1

Теперь возьмем для рассмотрения некую произвольную замкнутую поверхность S . Разобьем заданную поверхность на площадки небольшого размера Δ S i , рассчитаем элементарные потоки Δ Φ i поля через эти малые площадки, после чего найдем их сумму, что в итоге даст нам поток Φ вектора через замкнутую поверхность S (рис. 1 . 3 . 2):

Φ = ∑ ∆ Φ i = ∑ E m ∆ S i

Когда речь идет о поверхности замкнутого типа, всегда используется внешняя нормаль.

Рисунок 1 . 3 . 2 . Расчет потока Ф через произвольную замкнутую поверхность S .

Теорема или закон Гаусса для электростатического поля в вакууме является одним из основных электродинамических законов.

Теорема 1

Поток вектора напряженности электростатического поля E → через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε 0 .

Уравнение Гаусса имеет вид:

Φ = 1 ε 0 ∑ q в н у т р

Доказательство 1

Докажем указанную теорию: для этого исследуем сферическую поверхность (или поверхность шара) S . В центре заданной поверхности расположен точечный заряд q . Любая точка сферы обладает электрическим полем, перпендикулярным поверхности сферы и равным по модулю:

E = E n = 1 4 π ε 0 · q R 2 ,

где R является радиусом сферы.

Поток Φ через поверхность шара запишется, как произведение E и площади сферы 4 π R 2 . Тогда: Φ = 1 ε 0 q .

Следующим нашим шагом будет окружение точечного заряда произвольной поверхностью S замкнутого типа; зададим также вспомогательную сферу R 0 (рис. 1 . 3 . 3).

Рисунок 1 . 3 . 3 . Поток электрического поля точечного заряда через произвольную поверхность S , окружающую заряд.

Возьмем для рассмотрения конус с малым телесным углом Δ Ω при вершине. Рассматриваемый конус задаст на сфере малую площадку Δ S 0 , а на поверхности S – площадку Δ S . Элементарные потоки Δ Φ 0 и Δ Φ через эти площадки являются одинаковыми. В самом деле:

Δ Φ 0 = E 0 Δ S 0 , Δ Φ = E Δ S cos α = E Δ S " ,

где выражением Δ S " = Δ S cos α определяется площадка, которая задастся конусом с телесным углом Δ Ω на поверхности сферы радиуса n .

Поскольку ∆ S 0 ∆ S " = R 0 2 r 2 , то ∆ Φ 0 = ∆ Φ . Из полученного следует вывод о том, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ 0 через поверхность вспомогательной сферы:

Φ = Φ 0 = q ε 0 .

Так же мы можем продемонстрировать, что, когда замкнутая поверхность S не охватывает точечный заряд q , поток Φ равен нулю. Этот случай проиллюстрирован на рис. 1 . 3 . 2 . Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, т.е. в этой области не наблюдается обрыва или зарождения силовых линий.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов является следствием из принципа суперпозиции. Поле любого распределения зарядов возможно записать в виде векторной суммы электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S сложится из потоков Φ i электрических полей отдельных зарядов. Когда заряд q i расположен внутри поверхности S , он дает вклад в поток, равный q i ε 0 . В случае расположения заряда снаружи поверхности его вклад в поток есть нуль.

Так, мы доказали теорему Гаусса.

Замечание 1

Теорема Гаусса, по сути, есть следствие закона Кулона и принципа суперпозиции. Однако, взяв за изначальную аксиому утверждения теоремы, следствием станет закон Кулона, в связи с чем теорему Гаусса порой называют альтернативной формулировкой закона Кулона .

Опираясь на теорему Гаусса, в определенных случаях легко определить напряженность электрического поля вокруг заряженного тела (при наличии заранее угаданных симметрии заданного распределения зарядов и общей структуры поля).

Пример 2

В качестве примера можно рассмотреть задачу, в которой необходимо вычислить поле тонкостенного полого однородно заряженного длинного цилиндра с радиусом R . Такая задача имеет осевую симметрию, и из соображений симметрии электрическое поле должно иметь направление по радиусу. Таким образом, чтобы иметь возможность применить теорему Гаусса, оптимально выбрать поверхность замкнутого типа S в виде соосного цилиндра некоторого радиуса r и длины l , закрытого с обоих торцов (рис. 1 . 3 . 4).

Рисунок 1 . 3 . 4 . Иллюстрация поля однородно заряженного цилиндра. O O " – ось симметрии.

Если r ≥ R , то весь поток вектора напряженности пройдет через боковую поверхность цилиндра, поскольку поток через оба основания есть нуль. Формула площади боковой поверхности цилиндра запишется как: 2 π r l . Применим закон Гаусса и получим:

Φ = E 2 π r l = τ l ε 0 .

В указанном выражении τ является зарядом длины цилиндра. Далее можно записать:

E = τ 2 π ε 0 r .

Данное выражение не имеет зависимости от радиуса R заряженного цилиндра, а значит оно применимо и к полю длинной однородно заряженной нити.

Чтобы найти напряженность поля внутри заряженного цилиндра, необходимо создать замкнутую поверхность для случая r < R . В соответствии с симметрией задачи поток вектора напряженности через боковую поверхность цилиндра должен быть, и в этом случае он равен Φ = E 2 π r l . Исходя из гауссовской теоремы, этот поток находится в пропорции к заряду, расположенному внутри замкнутой поверхности. Заряд этот равен нулю, откуда вытекает, что электрическое поле внутри однородно заряженного длинного полого цилиндра тоже есть нуль.

Точно так же теорема и формула Гаусса применимы для определения электрического поля в иных случаях, когда распределение зарядов охарактеризовано какой-либо симметрией, к примеру, симметрией относительно центра, плоскости или оси. Во всех этих случаях необходимо выбирать замкнутую гауссову поверхность подходящей формы.

Пример 3

К примеру, в случае центральной симметрии поверхность оптимально выбрать в виде сферы, у которой центр расположен в точке симметрии. Когда мы имеем симметрию относительно оси, подходящим видом замкнутой поверхности будет соосный цилиндр, закрытый с обоих торцов (аналогично рассмотренному выше примеру).

При отсутствии симметрии и невозможности угадать общую структуру поля, теорема Гаусса не сможет быть применена для упрощения решения задачи по определению напряженности поля.

Пример 4

Разберем еще пример распределения зарядов при наличии симметрии: нахождение поля равномерно заряженной плоскости (рис. 1 . 3 . 5).

Рисунок 1 . 3 . 5 . Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность.

Здесь гауссову поверхность S оптимально задать как цилиндр некой длины, замкнутый с обоих концов. Ось цилиндра является перпендикуляром к заряженной плоскости; в свою очередь, торцы цилиндра находятся на одинаковом расстоянии от нее. В соответствии с симметрией поле равномерно заряженной плоскости должно везде иметь направление по нормали. Применим теорему Гаусса и получим:

2 E ∆ S = σ ∆ S ε 0 или E = σ 2 ε 0 .

Здесь σ является поверхностной плотностью заряда или зарядом, приходящимся на единицу площади.

Выражение, которое мы получили для электрического поля однородно заряженной плоскости, возможно использовать и для плоских заряженных площадок конечного размера: здесь расстояние от точки, в которой мы определяем напряженность поля, до заряженной площадки должно быть значимо меньше размеров площадки.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Произведение напряженности электрического поля E и такой плоской площадки S, во всех точках которой напряженность поля одинакова и перпендикулярная к ней, составляет поток N вектора напряженности через площадку S;

N = ES (6)

Если вектор напряженности не перпендикулярен к площадке, то необходимо определять составляющую вектора напряженности перпендикулярную к площадке, которую называют нормальной составляющей (рис. 1):

N = E n S = (E*cosβ)S

При вычислении потока через произвольную поверхность площадью S в неоднородном поле эту поверхность следует разбить на малые плоские элементы dS в пределах каждого из которых напряженность поля можно считать одинаковой; поток через отдельную элементарную площадку

dN = E n dS

Поток вектора напряженности через произвольную замкнутую поверхность находится суммированием (интегрированием) элементарных потоков:

Единицу измерения потока вектора напряженности найдем из формулы (6):

[N] = = В/м *м 2 = В*м (8)

Рис.1 Нормальная составляющая вектора напряженности электрического поля, Рис.2 электрический заряд внутри сферической поверхности

В качестве примера найдем поток вектора напряженности поля точечного заряда Q, помещенного в центре сферической (шаровой) поверхности радиуса R (рис. 2).
Напряженность поля заряда Q одинакова во всех точках этой поверхности и согласно ()

Так как векторы напряженности перпендикулярны к сферической поверхности, то E n = E и проходящий через поверхность поток вектора напряженности поля

Как видно из (9), полученное для частного случая сферической поверхности выражение потока не зависит ни от формы поверхности, ни от места расположения заряда внутри нее. Поэтому формула (9) справедлива для замкнутой поверхности любой формы и произвольно расположенных внутри нее зарядов, суммарное значение которых равно Q.

Итак, поток вектора напряженности электрического поля сквозь замкнутую поверхность равен отношению сумм зарядов, расположенных внутри этой поверхности, к абсолютной диэлектрической проницаемости среды. Получена соотношение называют теоремой Гаусса.

Наглядно поток изображают электрическими линиями, так чтобы вектор напряженности поля в любой точке был касательным к электрической линии, проведенной через
эту точку. Электрические линия поля неподвижных зарядов начинаются на положительных зарядах и заканчиваются на отрицательных. Число линий, пересекающих данную площадку, выбирают пропорциональным значению потока N через эту площадку. На показан электрические линии точечного заряда + Q 1 .

Электрическое поле неподвижных зарядов называют электростатическим.

ЛЕКЦИЯ № 7.ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУСА ДЛЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

ВВЕДЕНИЕ

На данной лекции мы продолжаем знакомиться с важнейшими характеристиками электростатического поля.

Введение понятия электрической индукции связано, прежде всего, с удобством описания электростатического поля и упрощением решения многих задач электростатики, главным образом, связанных с электростатическим полем в диэлектриках.

Дело в том, что еще одна величина, характеризующая электростатическое поле, – поток вектора индукции электростатического поля через любую поверхность определяется только свободными зарядами, а не всеми зарядами внутри, объема, ограниченного данной поверхностью.

При дальнейшем изучении электрических и магнитных полей мы еще не раз встретимся с аналогичными понятиями - индукция магнитного поля, поток магнитной индукции. Физический смысл этих понятий конечно разный, но математическая природа у них, совершенно эквивалентна.

1. ПОТОК ВЕКТОРА ИНДУКЦИИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

Как известно, напряженность электростатического поля зависит от свойств ср еды: в однородной изотропной среде напряженность поля обратно пропорциональна диэлектрической проницаемости .

Поэтому при переходе из одной среды в другую напряженность электростатического поля претерпевает скачкообразные изменения, создавая тем самым неудобства при расчете электростатических полей. Именно поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще одной векторной величиной – вектором электрического смещения или вектором индукции электростатического поля.

Определение. Электрическим смещением (электрической индукцией) называется векторная физическая величина равная произведению абсолютной диэлектрической проницаемости среды на напряженность электрического поля.

, (1)

где величина называется абсолютной диэлектрической проницаемостью среды.

Из формулы (1) следует, что вектор электрической индукции и вектор напряженности электростатического поля для изотропных сред, т.е. сред, свойства которых одинаковы по всем направлениям, всегда коллинеарны , так какабсолютная диэлектрическая проницаемость – величина строго положительная .

Найдем индукцию электрического поля точечного заряда.

Рис.1

(2)

Из формулы (2) видно, что, действительно, величина не зависит от свойств ср еды. Величина одинакова во всех средах (вода, керосин и т.д.).

Размерность электрической индукции в системе СИ:

Для графического изображения электростатического поля можно использовать линии электрического смещения .

Определение. Линии индукции электрического поля - это воображаемые линии, касательные к которым в каждой точке совпадают с вектором индукции электрического поля в данной точке.

Рассмотрим электрическое поле, характеризуемое вектором электрического смещения . Пусть в этом поле находится некоторая элементарная плоская поверхность площадью - (рис.2).

Рис.2

Построим к поверхности единичную нормаль , направим ее "наружу". Затем введем вектор ориентированной площадки , равный произведению площади этой элементарной поверхности на вектор единичной нормали:

Очевидно, что и , так как .

Определение Элементарным потоком вектора электрической индукции через площадку dS называется скалярная физическая величина, равная скалярному произведению вектора на векторориентированной площадки .

где - угол между вектором индукции и нормалью к поверхности , - проекция вектора электрической индукции на направление нормали .

Полный поток вектора через любую поверхность равен сумме элементарных потоков через элементарные поверхности, на которые можно разбить данную поверхность произвольной формы, то есть:

(4)

Размерность потока электрической индукциив системе СИ – кулон:

.

Замечание.

1) Для замкнутых поверхностей S поток вектора через эту поверхность равен:

()

За положительное направление нормали принимается направление внешней нормали, т.е. нормали, направленной наружу области, охватываемой поверхностью.

В данной части лекции мы изучили новые физические величины, характеризующие электрическое поле – индукцию электрического поля и поток вектора индукции электрического поля. Вектор электрическойиндукции является вспомогательной величиной, но, тем не менее, играет важную роль в процессе изучения электрического поля. Аналогичные величины будут введены при изучении магнитного поля.

2. ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУССА

Вычислить напряженность поля, создаваемого системой зарядов, можно, как известно, с помощью принципа суперпозиции электростатических полей. Но это в большинстве случаев связано с громоздкими вычислениями.

Эти расчеты можно значительно упростить, если использовать основную теорему электростатики, теорему Остроградского-Гаусса, определяющую поток вектора электрической индукции через любую замкнутую поверхность.

Теорема Остроградского-Гаусса формулируется следующим образом:

«Поток индукции электростатического поля через любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности».

Математически теорема Остроградского-Гаусса для электростатических полей записывается следующим образом:

= (5)

Замечания.

1) Поверхность обязательно должна быть замкнутой, форма поверхности не играет роли и может быть любой.

2) Если поверхность S не охватывает заряды , то поток электрической индукции через нее равен нулю (рис.3):

Рис.3

3) Если алгебраическая сумма зарядов равна 0, то и поток равен нулю.

Значение теоремы Остроградского-Гаусса огромно – она позволяет найти индукцию и напряженность электрического поля сложной конфигурации.

Алгоритм (схема) использования теоремы О c троградского-Гаусса при расчете напряженности электростатического поля, создаваемого произвольной конфигурацией зарядов, состоит из следующих пунктов:

1) Выбираем точку, в которой будем определять и

2) Через эту точку проводим замкнутую поверхность , охватывающую все заряды;

3) Вычисляем поток электрической индукции через эту поверхность по определению, то есть по формуле:

4) Считаем этот же поток, но по теореме Остроградского – Гаусса:

(5)

5) Приравниваем полученные в третьем и четвертом пункте выражения и находим величину электрической индукции в данной точке:

6) Зная электрическую индукцию , легко определить величину напряженности электростатического поля в данной точке :

Как уже говорилось выше, теорема Остроградского-Гаусса является одной из основных теорем электростатики, с помощью которой легко вычислить напряженность и электрическую индукцию электростатических полей различной конфигурации. Алгоритм применения теоремы Остроградского-Гаусса должен знать наизусть каждый студент.

3. ПРИМЕНЕНИЕ ТЕОРЕМЫ ОСТРОГРАДСКОГО-ГАУССА ДЛЯ РАСЧЕТА НАПРЯЖЕННОСТИ ЭЛЕКТРОСТАТИЧСЕКИХ ПОЛЕЙ

Часто при решении задач удобно считать, что заряды распределены в заряженном теле непрерывно – вдоль некоторой линии (например, в случае заряженного тонкого стержня), поверхности (например, в случае заряженной пластины), или объёма. Соответственно пользуются понятиями линейной, поверхностной и объёмной плотностей зарядов.

Объёмная плотность электрических зарядов это скалярная физическая величина равная отношению заряда тела к объему тела, по которому распределен заряд:

Если зарядраспределен равномерно по объему тела, то объемная плотность заряда есть постоянная величина и ее легко рассчитать по формуле:

Размерность объемной плотности зарядов определяется из указанных формул и в интернациональной системе единиц равна: .

Поверхностная плотность электрических зарядов определяется аналогичным образом – это скалярная физическая величина равная отношению заряда всей поверхности к площади этой поверхности:

Поверхностная плотность зарядов измеряется в системе СИ в кулонах, деленных на квадратный метр:

Линейной плотностью электрических зарядов называется скалярная физическая величина равная отношению заряда протяженного тела к длине этого тела:

Размерность линейной плотности зарядов в интернациональной системе единиц – кулон, деленный на метр:

3.1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Так как сфера заряжена равномерно, то поверхностная плотность заряда есть постоянная величина:

Пусть радиус сферы нам известен и равен . Тогда из формулы, приведенной выше, можно легко выразить общий заряд всей сферы:

Будем считать,что сфера заряжена положительно. Благодаря равномерному распределению заряда по поверхности сферы поле, создаваемое этими зарядами, обладает сферической симметрией. Поэтому линии электрической индукции (и силовые линии напряженности электростатического поля) направлены радиально от сферы (рис.4).

Рис.4

В соответствии с приведенным выше алгоритмом применения теоремы Остроградского-Гаусса выполним следующие действия:

1. Выберем произвольную точку А , расположенную на расстоянии от центра сферы и определим напряженность электростатического поля в этой точке;

2. Проведем через точку замкнутую поверхность . Учитывая сферическую симметрию задачи, удобно построить сферу радиусом с центром, точке, где находится центр заряженной сферы;

3. Считаем поток электрической индукции через поверхность по определению:

так как задача обладает сферической симметрией, то величина вектора электрической индукции в любой точке, находящейся на одинаковом расстоянии от центра заряженной сферы будет постоянна, поэтому мы имеем право вынести эту величину из-под знака интеграла. Кроме того, угол – угол между вектором электрической индукции и вектором нормали к сферической поверхности в любой точке сферическойповерхности, по которой проводится интегрирование, равен нулю.

Интеграл вида равен площади поверхности, по которой проводится интегрирование, поэтому окончательно можно записать:

;

4. Считаем этот же поток, но по теореме Остроградского – Гаусса:

5. Приравниваем полученные в пунктах 3 и 4 результаты:

Или ,

и находим величину электрической индукции в точке А :

Или

6. Определяем напряженность электростатического поля в точке :

или

Замечания:

1) Если точка А находится внутри заряженной сферы, то есть , тоэлектрическая индукция и напряженность электростатического поля в такой точке тождественно равны нулю и так как внутри заряженной сферы зарядов нет и поток электрической индукции через любую замкнутую поверхность, расположенную внутри заряженной сферы будет равен нулю . Другими словами – внутри заряженной сферы электрическое пол отсутствует.

2) Если точка А находится на поверхности заряженной сферы, то есть , то электрическая индукция и напряженность электрического поля на поверхности заряженной сферы соответственно равны:

Или

Или

График зависимости напряженности электростатического поля от расстояния до центра сферы (Рис.5):

Рис. 5

3.2. Напряженность поля равномерно заряженной бесконечной плоскости

Пусть имеется равномерно заряженная бесконечная плоскость с постоянной поверхностной плотностью заряда (рис.6).

Рис. 6

Будем считать плоскость бесконечной, если расстояние от плоскости до точки, где определяется , много меньше линейных размеров плоскости. Линии электрического смещения , так же как и силовые линии вектора в этом случае направлены перпендикулярно плоскости и идут симметрично в обе стороны

Будем использовать теорему Остроградского-Гаусса по известному алгоритму:

1. Выберем точку на расстоянии от плоскости.

2. Проведём через эту точку замкнутую поверхность в виде цилиндра, ось которого перпендикулярна заряженной поверхности. Точка лежит на основании цилиндра.

3. Вычислим поток индукции через построенную цилиндрическую поверхность по определению.

,

где – поток индукции через боковую поверхность цилиндра, – поток индукции через основание цилиндра.

Поток индукции через боковую поверхность равен нулю, так как угол между нормалью к боковой поверхности и вектором индукции равен . Поток через основание цилиндра:

4. Вычислим поток индукции по теореме Остроградского–Гаусса.

,

где – электрический заряд, находящийся внутри построенной нами замкнутой поверхности – цилиндра.

5. Приравняем результаты, полученные в пунктах 3 и 4, и найдём :

, отсюда

6. Вычислим напряженность электрического поля, создаваемого равномерно заряженной бесконечной плоскостью:

.

Рис. 7

Таким образом, индукция и напряженность поля равномерно заряженной плоскости не зависят от расстояния до плоскости и постоянны в любой точке поля: поле заряженной поверхности однородно.

Для отрицательно заряженной поверхности результат будет таким же, только направление векторов и изменится на обратное. График зависимости для такого поля показан на рис. 7.

Из этих формул видно, что электрическое поле бесконечной равномерно заряженной плоскости является однородным и не зависит от расстояния.

Используя принцип суперпозиций для электростатического поля, легко можно получить выражения для напряженности и электрической индукции электрического поля плоского конденсатора:

Заключение

Теорема Остроградского-Гаусса была выведена математически для векторного поля любой природы русским математиком М.В. Остроградским, а затем независимо от него Гаусс получил эту теорему применительно к электростатическому полю.

При доказательстве этой теоремы Гаусс опирался на закон Кулона и поэтому теорема Остроградского-Гаусса для электростатического поля есть следствие закона Кулона.

По своей сути теорема Гаусса математически выражает тот факт, что именно электрические заряды и есть источники электростатического поля, поэтому теорема Гаусса является основной теоремой электростатики.

4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

ЗАДАЧА № 1. Двум изолированным металлическим концентрически расположенным сферам радиусами 5 сантиметров и 10 сантиметров сообщены соответственно заряды 10 нанокулон и 20 нанокулон . Пространство между сферами заполнено диэлектриком с диэлектрической проницаемостью . Определить напряженность электростатического поля и величину электрической индукции на расстоянии 2 сантиметра, 7 сантиметров и 12 сантиметров от центра обеих сфер.

ДАНО:


НАЙТИ:

РЕШЕНИЕ: данная задача решается с использованием теоремы Остроградского-Гаусса. Найдем электрическую индукцию и напряженность электростатического поля в точке, находящейся на расстоянии 2 сантиметра от общего центра данных сфер, для этого построим сферическую поверхность радиусом 2 сантиметра, центр которой совпадает с центром металлических сфер. После этого найдем поток электрической индукции через эту сферическую поверхность двумя способами – по теореме Остроградского-Гаусса и по определению потока электрической индукции . Первый способ дает тривиальное значение – поток электрической индукции должен быть равен нулю – , так как внутри сферической поверхности радиуса 2 сантиметра нет никакого электрического заряда. Второй способ дает следующий результат:

,

так как угол в любой точке сферической поверхности, через которую мы ищем поток электрической индукции. Кроме того, здесь мы учли, что интеграл по замкнутой поверхности равен площади сферической поверхности радиусом 2 сантиметра.

Приравняем два полученных результата: . Отсюда следует, что электрическая индукция равна нулю на расстоянии 2 сантиметра от центра металлических сфер и вообще в любой точке, находящейся внутри обеих сфер .Найдем теперь напряженность электростатического поля. Для этого используем определение электрической индукции . Из этого равенства следует, что . Таким образом, напряженность электростатического поля так же будет равна нулю на расстоянии 2 сантиметра от центра сфер и в любой точке внутри металлических заряженных сфер .

Перейдем к точке, находящейся между заряженными металлическими сферами на расстоянии 7 сантиметров от их общего центра. Будем действовать по тому же алгоритму. Сначала проведем сферическую поверхность радиуса 7 сантиметров, центр которой совпадает с центром металлических сфер. Затем посчитаем поток электрической индукции через эту поверхность двумя способами. Из теоремы Остроградского-Гаусса следует, что . Использование определения потока электрической индукции дает другой результат:

.

Здесь мы учли те же соображения, что были использованы в первом случае:

и

Приравняв эти выражения, получим:

.

Таким образом, электрическая индукция в точке, находящейся между заряженными сферами на расстоянии 7 сантиметров от их общего центра, зависит только от заряда внутренней сферы , внешняя сфера никак не влияет на электрическое поле, которое существует внутри нее.

Напряженность электростатического поля в интересующей нас точке будет равна

,

где – диэлектрическая проницаемость вещества, заполняющего пространство между заряженными сферами.

Проверим размерность полученных рабочих формул:

и

Размерность соответствует действительности, поэтому можно приступать к вычислению конечного результата:

,

Переходим к третьему этапу задачи. Для того чтобы найти значение электрической индукции и напряженности электростатического поля вне обеих заряженных сфер в точке, находящейся на расстоянии 12 сантиметров от их общего центра, проведем сферическую поверхность радиусом 12 сантиметров, центр которой совпадает с центром заряженных сфер.

Определим поток электрической индукции через эту поверхность двумя способами. Теорема Остроградского-Гаусса дает следующий результат:

Определение потока электрической индукции приводит к другому результату:

Левые части этих двух равенств одинаковы, значит, правые части этих равенств должны быть равны между собой, то есть: .

Выразим искомые величины:

и

Таким образом, в создании электрического поля вне заряженных сфер участвуют обе сферы. Так как пространство, окружающее внешнюю заряженную сферу, ничем не заполнено (является вакуумом), то .

Размерность этих формул можно не проверять, так как эта операция уже была проведена выше.

,

Знак минус дает нам информацию о направлении вектора электрической индукции и вектора напряженности электростатического поля в точке, находящейся на расстоянии 12 сантиметров от центра заряженных сфер. Действительно, в любой точке, лежащей вне заряженных сфер, вектор индукции и вектор напряженности электростатического поля будет направлен радиально к внешней заряженной сфере.

ЗАДАЧА № 2. Две бесконечно протяженные равномерно заряженные пластины находятся на некотором расстоянии друг от друга. Напряженность электростатического поля между пластинами 3000 вольт на метр, а вне пластин – 1000 вольт на метр. Найти поверхностную плотность заряда на каждой пластине.

ДАНО:

НАЙТИ:

РЕШЕНИЕ: при решении данной задачи мы воспользуемся результатами применения теоремы Остроградского-Гаусса для расчета напряженности и электрической индукции электростатического поля, создаваемой бесконечной равномерно заряженной плоскостью. Оказывается электростатическое поле, существующее около такой плоскости, является по своему характеру однородным, силовые линии такого электростатического поля направлены перпендикулярно плоскости. Если заряд на плоскости положительный, то силовые линии направлены от плоскости в обе стороны, если же заряд на плоскости отрицательный, то силовые линии направлены по обе стороны к плоскости. Величина напряженности в любой точке пространства около бесконечной равномерно заряженной плоскости равна .

Тот факт, что напряженность электростатического поля между пластинами больше, чем напряженность поля вне пластин говорит о том, что пластины заряжены разноименными зарядами – одна положительно, другая– отрицательно. Так как вне пластин вектора направлены в противоположные стороны , а между пластинами – в одну сторону, то есть .

Рис. 2

Если пластины зарядить одноименными зарядами, допустим положительно, будет, наоборот – между пластинами напряженность электростатического поля будет меньше, чем напряженность вне пластин, так как

ЗАДАЧА № 3. С какой силой действует электрическое поле плоского конденсатора на находящийся в нем электрический заряд 1 нанокулон ? Найти силу взаимодействия пластин конденсатора. Поверхностная плотность заряда на обкладках конденсатора равна 0,1 нанокулон на квадратный метр, а площадь пластин конденсатора равна 100 квадратных сантиметра.

ДАНО:

НАЙТИ:

РЕШЕНИЕ: электростатическое поле внутри плоского конденсатора складывается из электрического поля, создаваемого положительно заряженной пластиной и отрицательно заряженной пластиной. Напряженность результирующего поля будет равна векторной сумме напряженностей электрического поля, создаваемого одной и второй пластиной:

Величина напряженности бесконечной равномерно заряженной пластины может быть найдена с помощью теоремы Остроградского-Гаусса. Как известно, ее величина равна:

Суммируя все вышесказанное, можно найти напряженность электростатического поля внутри плоского конденсатора :

Этот результат говорит нам о том, что электрическое поле внутри плоского конденсатора является однородным.

Если поместить внутрь плоского конденсатора заряженную частицу, то она будет находиться в электростатическом поле, которое будет действовать на нее с определенной силой:

Проверим размерность полученной рабочей формулы:


Размерность правильная, так как сила действительно измеряется в ньютонах.

Математические вычисления дают следующий результат:

Силу взаимодействия, а именно силу притяжения пластин плоского конденсатора, можно найти следующим образом: рассмотрим одну заряженную пластину конденсатора, находящуюся в электростатическом поле, создаваемом другой заряженной пластиной. Величина заряда всей пластины конденсатора равна , где – площадь одной пластины плоского конденсатора. Напряженность электростатического поля, в котором находится эта пластина конденсатора, равна . Следовательно, сила, которая будет действовать на одну пластину конденсатора со стороны электростатического поля, создаваемого другой пластиной, будет описываться следующей формулой:

Итак, мы ответили на второй вопрос задачи – нашли силу взаимодействия (силу, с которой притягиваются) пластины плоского конденсатора.

Проверим размерность этой формулы:


Размерность соответствует действительности, приступим к математическим вычислениям:

Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности можно судить не только о направлении, но и величине вектора в различных точках пространства.

Рассмотрим силовые линии неподвижного положительного точечного заряда. Они представляют собой радиальные прямые, выходящие из заряда и заканчивающиеся на бесконечности. Проведем N таких линий. Тогда на расстоянии r от заряда число силовых линий, пересекающих единицу поверхности сферы радиуса r , будет равно . Эта величина пропорциональна напряженности поля точечного заряда на расстоянии r. Число N всегда можно выбрать таким, чтобы выполнялось равенство

откуда . Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает замкнутую поверхность любой формы, охватывающую заряд q. В зависимости от знака заряда силовые линии либо входят в эту замкнутую поверхность, либо выходят наружу. Если число выходящих линий считать положительным, а входящих – отрицательным, то можно опустить знак модуля и записать:

. (1.4)

Поток вектора напряженности. Поместим в электрическое поле элементарную площадку, имеющую площадь . Площадка должна быть настолько малой, чтобы напряженность электрического поля во всех ее точках можно было считать одинаковой. Проведем нормаль к площадке (рис. 1.17). Направление этой нормали выбирается произвольно. Нормаль составляет угол с вектором . Потоком вектора напряженности электрического поля через выделенную поверхность называется произведение площади поверхности на проекцию вектора напряженности электрического поля на нормаль к площадке:

где – проекция вектора на нормаль к площадке .

Поскольку число силовых линий, пронизывающих единичную площадку, равно модулю вектора напряженности в окрестности выделенной площадки, то поток вектора напряженности через поверхность пропорционален числу силовых линий, пересекающих эту поверхность. Поэтому, в общем случае, наглядно поток вектора напряженности поля через площадку можно интерпретировать как величину, равную числу силовых линий, пронизывающих эту площадку:

. (1.5)

Заметим, что выбор направления нормали условен, ее можно направить и в другую сторону. Следовательно, поток – величина алгебраическая: знак потока зависит не только от конфигурации поля, но и от взаимной ориентации вектора нормали и вектора напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен. В случае замкнутой поверхности принято нормаль брать наружу области, охватываемой этой поверхностью, то есть выбирать внешнюю нормаль.

Если поле неоднородно и поверхность произвольна, то поток определяется так. Всю поверхность надо разбить на малые элементы площадью , вычислить потоки напряженности через каждый из этих элементов, а потом просуммировать потоки через все элементы:

Таким образом, напряженность поля характеризует электрическое поле в точке пространства. Поток напряженности зависит не от значения напряженности поля в данной точке, а от распределения поля по поверхности той или иной площади.

Силовые линии электрического поля могут начинаться только на положительных зарядах и заканчиваться на отрицательных. Они не могут начинаться или обрываться в пространстве. Поэтому, если внутри некоторого замкнутого объема нет электрического заряда, то полное число линий, входящих в данный объем и выходящих из него, должно равняться нулю. Если из объема выходит больше линий, чем входит в него, то внутри объема находится положительный заряд; если входит линий больше, чем выходит, то внутри должен быть отрицательный заряд. При равенстве полного заряда внутри объема нулю или при отсутствии в нем электрического заряда линии поля пронизывают его насквозь, и полный поток равен нулю.

Эти простые соображения не зависят от того, как электрический заряд распределен внутри объема. Он может находиться в центре объема или вблизи поверхности, ограничивающей объем. В объеме может находиться несколько положительных и отрицательных зарядов, распределенных внутри объема любым способом. Только суммарный заряд определяет полное число входящих или выходящих линий напряженности.

Как видно из (1.4) и (1.5), поток вектора напряженности электрического поля через произвольную замкнутую поверхность, охватывающую заряд q, равен . Если внутри поверхности находится n зарядов, то, согласно принципу суперпозиции полей, полный поток будет складываться из потоков напряженностей полей всех зарядов и будет равен , где под в этом случае подразумевается алгебраическая сумма всех зарядов, охватываемых замкнутой поверхностью.

Теорема Гаусса. Гаусс первым обнаружил тот простой факт, что поток вектора напряженности электрического поля через произвольную замкнутую поверхность должен быть связан с полным зарядом, находящимся внутри этого объема:

Гаусс Карл Фридрих (1777–1855)

Великий немецкий математик, физик и астроном, создатель абсолютной системы единиц в физике. Разработал теорию электростатического потенциала и доказал важнейшую теорему электростатики (теорема Гаусса). Создал теорию построения изображений в сложных оптических системах. Одним из первых пришел к мысли о возможности существования неевклидовой геометрии. Кроме того, Гаусс внес выдающийся вклад практически во все разделы математики.

Последнее соотношение и представляет собой теорему Гаусса для электрического поля:поток вектора напряженности через произвольную замкнутую поверхность пропорционален алгебраической сумме зарядов, расположенных внутри этой поверхности.Коэффициент пропорциональности зависит от выбора системы единиц.

Следует отметить, что теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Если бы напряженность электрического поля изменялась бы не обратно пропорционально квадрату расстояния, то теорема оказалась бы несправедливой. Поэтому теорема Гаусса применима к любым полям, в которых строго выполняется закон обратных квадратов и принцип суперпозиции, например, к гравитационному полю. В случае гравитационного поля роль зарядов, создающих поле, играют массы тел. Поток линий гравитационного поля через замкнутую поверхность пропорционален полной массе, заключенной внутри этой поверхности.

Напряженность поля заряженной плоскости. Применим теорему Гаусса для определения напряженности электрического поля бесконечной заряженной плоскости. Если плоскость бесконечна и заряжена равномерно, то есть поверхностная плотность заряда одинакова в любом ее месте, то линии напряженности электрического поля в любой точке перпендикулярны этой плоскости. Чтобы показать это, воспользуемся принципом суперпозиции для вектора напряженности. Выделим два элементарных участка на плоскости, которые можно считать точечными для точки А , в которой необходимо определить напряженность поля. Как видно из рис. 1.18, результирующий вектор напряженности будет направлен перпендикулярно плоскости. Поскольку плоскость можно разбить на бесконечное количество пар таких участков для любой точки наблюдения, то, очевидно, что силовые линии поля заряженной плоскости перпендикулярны к плоскости, и поле является однородным (рис. 1.19). Если бы это было не так, то при перемещении плоскости вдоль самой себя поле в каждой точке пространства менялось, но это противоречит симметрии заряженной системы (плоскость бесконечна). В случае положительно заряженной плоскости силовые линии начинаются на плоскости и заканчиваются на бесконечности, а для отрицательно заряженной плоскости силовые линии начинаются на бесконечности и входят в плоскость.

Рис. 1.18 Рис. 1.19

Для определения напряженности электрического поля бесконечной положительно заряженной плоскости мысленно выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания параллельны ей, и одно из оснований проходит через интересующую нас точку поля (рис. 1.19). Цилиндр вырезает из заряженной плоскости участок площадью , и такую же площадь имеют основания цилиндра, расположенные по разные стороны от плоскости.

Согласно теореме Гаусса поток вектора напряженности электрического поля через поверхность цилиндра связан с электрическим зарядом внутри цилиндра выражением:

.

Так как линии напряженности пересекают лишь основания цилиндра, поток через боковую поверхность цилиндра равен нулю. Поэтому поток вектора напряженности через цилиндрическую поверхность будет складываться только из потоков через основания цилиндра, следовательно,

Сравнивая два последних выражения для потока вектора напряженности, получим

Напряженность электрического поля между разноименно заряженными пластинами. Если размеры пластин значительно превосходят расстояние между ними, то электрическое поле каждой из пластин можно считать близким к полю бесконечной равномерно заряженной плоскости. Так как линии напряженности электрического поля разноименно заряженных пластин между пластинами направлены в одну сторону (рис. 1.20), то напряженность поля между пластинами равна

.

Во внешнем пространстве линии напряженности электрического поля разноименно заряженных пластин имеют противоположные направления, поэтому вне этих пластин результирующая напряженность электрического поля равна нулю. Полученное для напряженности выражение справедливо для больших заряженных пластин, когда напряженность определяется в точке, расположенной далеко от их краев.

Напряженность электрического поля равномерно заряженной тонкой проволоки бесконечной длины. Найдем зависимость напряженности электрического поля равномерно заряженной тонкой проволоки бесконечной длины от расстояния до оси проволоки, используя теорему Гаусса. Выделим участок проволоки конечной длины . Если линейная плотность заряда на проволоке , то заряд выделенного участка равен .







2024 © winplast.ru.