Трансформатор питания для шуруповерта 14в схема. Сетевой блок питания для аккумуляторного шуруповёрта. Каких параметров мощности БП можно добиться от энергосберегающей лампы


Аккумуляторный шуруповёрт - прекрасный помощник в хозяйстве. Инструмент вместе с мастером работает в доме и в саду, трудится в гараже или в поле. До тех пор, пока не сядет аккумулятор. Количество циклов заряд-разряд у аккумулятора ограничено, батарея портится и от безделья: саморазряд разрушает элементы. В среднем аккумулятор живёт 3 года, после чего его приходится заменять. Спасти инструмент можно, переделав его в сетевой. Переделка выполняется разными способами.

Действительно ли стоит переделывать?

Без аккумуляторов шуруповёрт превращается в железку. Когда батареи перестают держать заряд, приходится искать новые элементы питания. Во-первых, это дорого - цена аккумуляторов составляет до 80% стоимости шуруповёрта, эффективнее купить новый инструмент. Во-вторых, батареи не всегда бывают в продаже, например, если модель снята с производства. В-третьих, рачительный хозяин стремится использовать все возможности для экономии средств.

Переделка аккумуляторного шуруповёрта для работы от электрической сети - хороший выход. Что это даёт:

  1. Инструмент получает новую жизнь.
  2. Больше не нужны батареи, требующие заряда.
  3. Крутящий момент инструмента не зависит от заряда батареи.

Недостаток переделанной конструкции - зависимость от розетки и длины сетевого кабеля.

Внимание! Работы на высоте, превышающей два метра, переделанным шуруповёртом не допускаются.

Как переделать аккумуляторный шуруповёрт для работы от сети 220 Вольт

Мастера придумали несколько способов, чтобы переделать шуруповёрт для работы от электрической сети. Все они заключаются в том, чтобы предоставить мотору требуемое напряжение питания с помощью промежуточного источника или преобразователя.

Таблица: варианты источников питания для сетевого шуруповёрта

Источник питания Достоинства Недостатки
Комплектное зарядное устройство шуруповёрта.
  • Несложная переделка.
  • Используется существующее зарядное устройство.
  • Не требуется подбирать напряжение блока питания.
Зарядное устройство занимает место на столе.
Готовый блок питания, помещённый в корпус старого аккумулятора.
  • Несложная переделка.
  • Не требуется вмешательство в электрическую схему шуруповёрта.
  • Поиск готового компактного блока питания на требуемое напряжение.
  • Блок питания греется в закрытом корпусе, надо делать перерывы в работе.
Самодельный блок питания, помещённый в корпус старого аккумулятора.
  • Красивое инженерное решение - из шуруповёрта выходит только сетевой шнур.
  • Нет потерь в кабеле с низким напряжением.
  • Не требуется вмешательство в электрическую схему шуруповёрта.
  • Требуется подобрать схему и найти радиодетали.
  • Мастер должен иметь опыт пайки, сборки и отладки электрических схем.
Внешний блок питания Несложная переделка.
  • Блок питания занимает место на столе.
  • Нужно найти походящий блок питания.
Блок питания от компьютера
  • Несложная переделка.
  • Компьютерный блок питания легко найти.
  • Подойдёт любой блок питания от 300 Вт.
  • Требуется разбирать шуруповёрт и подключаться к его схеме.
  • Блок питания занимает много места на столе.

Подключение шуруповёрта к зарядному устройству

Внимание! При низком напряжении велики потери в проводе, поэтому кабель между зарядным устройством и инструментом должен быть не длиннее 1 метра, сечением не менее 2,5 кв. мм.

Последовательность действий:

    Припаять или прицепить зажимами «крокодил» к клеммам зарядного устройства два провода.

  1. Разобрать старый аккумулятор и вынуть из него севшие элементы.
  2. Просверлить в корпусе аккумулятора отверстие для кабеля, продеть кабель в отверстие. Желательно уплотнить соединение изолентой или термоусадочной трубкой, чтобы провод не вырвался из корпуса.
  3. Удалённые из аккумулятора элементы нарушат развесовку шуруповёрта - рука будет уставать. Чтобы восстановить баланс, в корпус следует поместить груз - это может быть плотное дерево или кусок резины.
  4. Припаять кабель к клеммам бывшего аккумулятора, подключаемым к шуруповёрту.
  5. Собрать корпус аккумулятора.
  6. Остаётся испытать обновлённый инструмент в работе.

Монтаж готового блока питания в корпусе старого аккумулятора

Внимание! В закрытом корпусе блок питания плохо охлаждается. Рекомендуется проделать отверстия в стенках корпуса. Не работайте инструментом без перерыва дольше 15 минут.

Порядок действий:

  1. Разобрать старый аккумулятор и вынуть из него неработающие элементы.
  2. Установить блок питания в корпус аккумулятора. Подключить контакты высокого напряжения и клеммы низкого напряжения.
  3. Собрать и закрыть корпус аккумулятора.
  4. Установить аккумулятор в шуруповёрт.
  5. Включить вилку блока питания в розетку и проверить обновлённый сетевой инструмент в работе.

Самодельный блок питания

Внимание! Соблюдайте правила электробезопасности. Пайку и подключение проводите при обесточенном устройстве.

Пошаговая инструкция:

  1. Разобрать корпус старого аккумулятора, вынуть из него севшие батареи.
  2. Установить элементы электрической схемы блока питания на монтажную плату, припаять контакты.
  3. Установить собранную плату в корпус. Проверить тестером наличие напряжения на выходе.

    Блок питания в корпусе

  4. Подключить провода низкого напряжения к клеммам старого аккумулятора. Собрать корпус.

    Останется только собрать корпус аккумулятора

  5. Подключить шуруповёрт к электрической сети и проверить его работу.

Видео: самодельный литиевый аккумулятор для шуруповёрта

Подключение к внешнему блоку питания

Внимание! В процессе доработки потребуется разобрать корпус шуруповёрта и вмешаться в электрическую схему. Запомните последовательность разборки, чтобы собрать все части в обратной последовательности.

Что делать:


Подключение к блоку питания от компьютера

Инструкция:

  1. Найти или купить блок питания от компьютера, мощностью не менее 300 Вт.
  2. Разобрать корпус шуруповёрта. Найти внутри провода питания двигателя. Припаять к проводам разъёмы для компьютерного блока питания.
  3. Вывести из корпуса разъёмы для подключения компьютерного блока питания.
  4. Подключить шуруповёрт к новому блоку питания.
  5. Включить блок питания в сеть и проверить работу прибора.

Видео: блок питания для шуруповёрта из компьютерного БП

Как запитать шуруповёрт, сохранив его автономность

Если мастер работает в здании, к которому не подведено электричество, а аккумуляторы уже испортились, есть способы запитать шуруповёрт:

  • заменить старые банки аккумуляторов на новые;
  • подключить шуруповёрт к автомобильному аккумулятору;
  • подключить инструмент к другому аккумулятору, например, взятому от источника бесперебойного питания.

Замена старых элементов

Внимание! Заменяя батареи, обращайте внимание на правильную полярность подключения элементов.

Порядок действий:


Внимание! Заряжать переделанный аккумулятор следует только специально подобранным зарядным устройством.

  • Подсоединить клеммы. Опробовать инструмент в работе.
  • Подключение к внешнему аккумулятору

    Последовательность действий:

    1. Купить или найти внешний аккумулятор, например, взять от ненужного источника бесперебойного питания.
    2. Взять провод сечением не менее 2,5 кв. мм. Снять изоляцию и установить на медные концы зажимные клеммы, подходящие для крепления на аккумуляторе.
    3. Второй конец кабеля поместить в корпус старого аккумулятора и припаять к клеммам, вставляющимся в шуруповёрт.
    4. Вставить корпус аккумулятора в шуруповёрт, подключить кабель клеммами к аккумулятору.
    5. Опробовать восстановленный инструмент в работе.

    Электрический аккумуляторный инструмент служит в несколько раз дольше, чем питающие его батареи. Выбрасывать на помойку шуруповёрт с негодными элементами - неразумно. Настоящий хозяин сможет отремонтировать прибор, переведя его на другой источник питания, тем самым дав ему новую жизнь.

    Аккумуляторный шуруповёрт это несомненно полезный инструмент, главным плюсом которого является мобильность. Но когда полностью или частично умирают родные аккумуляторы, покупка новых выливается в кругленькую сумму, сопоставимой половине стоимости нового инструмента. Многие просто покупают новый шуруповёрт, я же предлагаю за счёт потери мобильности сделать для него надёжный источник питания, который навсегда уберёт проблему постоянной зарядки полудохлых аккумуляторов.

    Давайте разберём все за и против такой модернизации

    Начнём пожалуй с минусов . Самая большая и единственная проблема — это привязка проводами шуруповёрта к розетке, которая с лихвой перекрывается нижеперечисленными плюсами:

    • Шуруповёрт всегда готов к работе, проблема незаряженных аккумуляторов (или не вовремя разрядившихся) отпадает.
    • Прекрасно чувствует себя в среде низких и отрицательных температур, в отличие от аккумулятора.
    • Если родные аккумуляторы сдохли, а покупать новые душит жаба, то блок питания полностью заменяет аккумуляторы.

    Если вас устраивают такие условия, то начнём!

    Блок питания можно сделать импульсным или трансформаторным. Почему я остановился именно на трансформаторном варианте, будет понятно по ходу прочтения статьи. Если ваш шуруповёрт работает от 12 или 14 вольт, то советую остановится именно на импульсном блоке питания от компьютера. Такой вариант требует минимум переделки и затрат.

    Пациент №1

    Причина модернизации: Аккумуляторы быстро садятся, даже тогда, когда они были новыми.

    Цель модернизации: Получить гибрид, работающий от аккумуляторов и от сети.

    Для питания нужен ток, порядка 10А. Тут встаёт вопрос применения компьютерного блока питания, но вот незадача — шуруповёрт работает от 18в. При подаче на него 12в крутит очень вяло и можно затормозить рукой почти не прилагая никаких усилий. Хотя некоторые утверждают, что шурупорвёрт нормально крутит и от 12 вольт, но теперь так сказать, миф проверен и разрушен.

    Остаётся 2 варианта — переделывать ШИМ управление импульсного блока, чтобы он выдал нужное напряжение, либо использовать трансформатор с нужным напряжением.

    Ещё одним минусом импульсного блока питания является то, что он рассчитан для работы при комнатной температуре, и не известно, как он поведёт себя при более низкой. Трансформатору в принципе практически всё равно в каких условиях его эксплуатируют. Хотя это всё предположения, не проверенные на практике.

    Мощный трансформатор на 18 вольт довольно сложно найти, а для меня стало невозможно. Вот на этом моменте я хотел вернутся к варианту с компьютерным блоком питания, но вдруг, как говорят мастера 7 рязряда в руки случайно попал тороидальный трансформатор с намотанной первичной обмоткой. Осталось только намотать вторичку, у меня получилось около 90 витков проводом 1.5.

    Если вы решились перемотать трансформатор на другое напряжение , то вам поможет программа Power Trans.

    Блок питания выполнен в корпусе от AT блока. Роль выпрямителя играют 10 амперные диоды шоттки, включенные по мостовой схеме. 220 поступает на родной разъём блока, 18в выходит с разъёма, предназначенного для подключения монитора. Тумблер является выключаетем питания, а светодиод сигнализирует о наличии 18в.

    Для удобства в работе и переноске блок оснащён складной ручкой:

    Так как мне нужен гибрид, пришлось вывести отдельную линию питания для подключения блока:

    При этом не стоит забывать отсоединять аккумуляторы при работе от блока.

    Воспользовавшись случаем, при разборке шуруповёрта добавил подсветку рабочей зоны:

    В итоге получился такой мутант:

    Пациент №2

    Причина модернизации: Умер родной аккумулятор, восстановление не оправдано.

    Цель модернизации: Заменить аккумулятор блоком питания.

    Вот тут мне попался агрегат на 12 вольт, и я подключил его к компьютерному блоку питания. Но не нут то было — блок стал уходить в защиту. Подключил его к более мощному БП, картина не изменилась. Причиной тому явилась короткозамкнутая обмотка двигателя. Щётки у двигателя оказались довольно большими, и я решил сделать трансформаторный блок питания, в нём защиты нет. В любом случае двигатель какое-то время поработает, а потом его можно будет заменить (прекрасно подходят от других шуруповёртов и от автомобильных помп).

    Вот тут мне пригодился трансформатор от ИБП, удачно пролежавший у меня под столом пол десятка лет в ожидании своего звёздного часа. Как раз под искомые 12в.

    Всё собрано по тому же принципу, только вместо диодов шоттки использовал 3 диодные сборки шоттки, добытые из компьютерных БП.

    В предыдущем блоке я использовал целый шнур для подключения монитора, но так делать не стоит. Сечение родного шнура мало, и вызывает нагрев и потери. Правильнее использовать только разъём. К нему я подпаял двухжильный ПВС 2,5 квадрата:

    Сильно длинный низковольтный шнур лучше не использовать, будут потери. Лучше сделать длиннее сетевой шнур.

    Вынул из корпуса аккумулятора банки и подключил питание:

    Машинка готова

    Аккумуляторные шуруповёрты обеспечивают мобильность и свободу движения при выполнении различных работ. Однако распространённая проблема всех питающих батарей – это снижение эффективности со временем. Через определённое количество циклов они начинают хуже держать заряд или вовсе выходят из строя. Часто это становится причиной покупки нового дорогостоящего инструмента. Опытные мастера рекомендуют сделать блок питания для шуруповёрта, что позволит использовать его неограниченно на полной мощности.

    Конструктивные особенности шуруповёрта

    Любой современный шуруповёрт имеет достаточно простую конструкцию. Он состоит из нескольких основных элементов, присутствующих в каждой модели:

    • электродвигатель,
    • аккумуляторная батарея,
    • клавиша запуска,
    • регулятор усилия,
    • регулятор скорости вращения,
    • планетарный редуктор,
    • рычаг изменения направления движения.

    Для предстоящей переделки имеют значение только первые три элемента – двигатель, аккумулятор и кнопка пуска, а остальные не будут затрагиваться никаким образом. Задача заключается в том, чтобы переделать аккумулятор в блок питания для работы от обычной электросети. Батареи являются наиболее дорогим элементом – они занимают до 75% общей стоимости инструмента, так что такое решение оправдано.

    Подготовительный этап

    Сначала необходимо учесть размеры корпуса инструмента, чтобы новый элемент поместился внутрь. Сетевой блок можно разместить в корпусе самого шуруповёрта или в корпусе батареи в зависимости от конкретной модели. Габариты внешне определить сложно, поэтому желательно открыть его и изъять все внутренние компоненты. Если корпус склеен по швам, то необходимо ножом аккуратно разделить его. Чаще всего он крепится только на небольшие шурупы. Основные действия на предварительном этапе:

    1. 1. Внимательно изучаем размеры и ищем место для установки нового компонента.
    2. 2. Находим маркировку с указанием напряжения питания (запоминаем его).
    3. 3. Вычисляем требуемую силу тока.

    Последний пункт вызывает трудности, потому что производители обычно не пишут этот параметр. Для вычисления нужно мощность (полную электрическую нагрузку) в ваттах разделить на напряжение электрической цепи в вольтах. Вычисление можно сделать на глаз по ёмкости и времени заряда.

    Если первое значение составляет 1,2 А/ч, а второе 2,5 часа, то сила тока (А) будет равна примерно среднему значению, т. е. около 1,9 А.

    При некорректной оценке можно потратить много сил и времени на создание блока питания, но не получить желаемого результата.

    • размеры,
    • минимальная требуемая сила тока,
    • требуемое для работы напряжение для питания электродвигателя.

    Большой популярностью пользуются импульсные сетевые блоки, потому что они легче и меньше трансформаторных. Нужно учитывать, что на дешёвых китайских моделях обычно пишут завышенные характеристики. Старые блоки советского образца подходят для переделки, но у них большой вес и низкий КПД. Найти нужные компоненты можно в специализированных магазинах или на рынках с товарами для радиолюбителей. Просто сообщите продавцу требуемые технические параметры.

    Способы переделывания шуруповёрта

    К этому моменту корпус уже должен быть открыт, поэтому можно приступать к переделыванию бокса, в котором до этого располагалась АКБ. Последовательность действий будет следующая:

    1. 1. Отделить от вилки шнур с выводами (необходимо воспользоваться паяльником).
    2. 2. Разместить "голый" сетевой блок питания на место бывшей аккумуляторной батареи.
    3. 3. Подвести шнур для питания к БП через специальное отверстие в корпусе.
    4. 4. Припаять шнур к БП.

    Основная задача сводится к перепаиванию проводов от контактов, которые соединяются с аккумуляторной батареей, к контактам нового блока питания. В итоге ток пойдёт сразу на них, позволяя запускать мотор при нажатии кнопки.

    Выход блока соединяется клеммами с обязательным соблюдением полярности. Вся эта конструкция должна уместиться на месте бывшего аккумулятора, который теперь уже не нужен. Если что-то не сходится по размерам, тогда лучше встроить новое гнездо в рукоятку инструмента.

    Обязательное условие – это подключение блока питания параллельно питающим выводам, а в разрыве провода на плюс установить специальный диод. Если этого не сделать, то питание во время работы может пойти на батарею. Диод в свою очередь встраивается в схему минусом в сторону электродвигателя инструмента.

    Разнообразные блоки питания для электроинструмента

    Вы можете сделать блок питания для шуруповёрта своими руками, а можете купить готовый вариант на блошином рынке. Народные умельцы предлагают БП с уже подсоединёнными разъёмами, которые вставляются в гнездо АКБ. После этого инструмент начинает работать от сети.

    При отсутствии под рукой розетки можно воспользоваться автомобильной аккумуляторной батареей. В этом случае необходимо соединить контакты шуруповёрта с контактами АКБ, используя специальные зажимы. Однако такой вариант рекомендуется использовать только в крайнем случае, так как мощности автомобильной батареи недостаточно. Обычно выдаваемое напряжение не превышает 11–12В, а чтобы работать шуруповёртом требуется не менее 18–19В.

    Распространённый вариант среди радиолюбителей – это элементы АТ-типа, используемые для питания компьютеров. Плюсом является то, что к таким устройствам прилагается подробная спецификация, поэтому не придётся самостоятельно высчитывать силу тока и другие параметры. Внутри него имеется всё необходимое для стабильной работы: диодная сборка, трансформаторы, силовые транзисторы. Остаётся только правильно подключить его к питающим контактам шуруповёрта.

    Наиболее эстетичный вариант – это подключение электроинструмента напрямую к сети при помощи вилки на гибком кабеле. Однако провод нельзя напрямую подвести от контактов к вилке. Чтобы сделать функциональный и безопасный сетевой прибор, потребуется отдельный БП или трансформатор с выпрямителем. В данном случае подойдёт любая модель, если её характеристики соответствуют требуемым параметрам. Такой способ сборки больше подходит для опытных мастеров, потому что нужно точно рассчитать количество витков и диаметр проволоки.

    Если хочется сохранить удобство и мобильность, тогда подойдёт увеличение ёмкости аккумулятора. Необходимо найти батарею от любой техники, например, ноутбука. Обычно они достаточно мощные и способны поддерживать работоспособность на протяжении нескольких часов.

    Выполняем следующие действия:

    1. 1. Разбираем корпус устройства, извлекаем батарею.
    2. 2. Соединяем проводку новой батареи со старой, строго соблюдая полярность.
    3. 3. Скрепляем провода с помощью изолирующей ленты или спаиваем паяльником.
    4. 4. Включаем электроинструмент, проверяем его работоспособность.

    Кабель для зарядки устройства нужно подводить отдельно, поэтому нужно прикрепить штекер. Если всё соблюдено правильно, то шуруповёрт сможет работать от АКБ, а заряжать его можно как обычный ноутбук, воткнув вилку в сеть.

    Вне зависимости от выбранного способа нужно помнить, что характеристики устройства поменялись. При работе от сети максимальный крутящий момент достигается не сразу, а через некоторое время. Увеличившаяся мощность приводит к быстрому нагреванию, поэтому следует каждые 15–20 минут давать небольшой отдых. При эксплуатации переделанного инструмента не стоит забывать о технике безопасности, поэтому обязательным условием является качественная изоляция и заземление.

    Из-за нарушенной герметичности корпуса увеличивается интенсивность загрязнения, поэтому следует регулярно прочищать его от пыли. Внутрь также может попасть влага, особенно при работе на открытом воздухе. Соблюдение простых правил защитит от неприятных происшествий и существенно продлит срок службы электрического инструмента.

    Знакомый попросил собрать внешний блок питания для шурупоповёрта. Вместе с шуруповёртом (рис.1 ) принес трансформатор питания от старого советского выжигателя-гравёра «Орнамент-1» (рис.2) – посмотреть, нельзя ли его использовать?

    Сначала, конечно, разобрали аккумуляторный отсек, посмотрели на «банки» (рис.3 и рис.4 ). Проверили зарядным устройством на работоспособность каждую «банку» несколькими циклами заряда-разряда – из 10 штук только 1 хорошая и 3 более-менее нормальные, а остальные совсем «сдохли». Значит, точно придётся делать внешний блок питания.

    Чтобы собирать блок питания, надо знать какой ток потребляет шуруповёрт при работе. Подключив его к лабораторному источнику, узнаём, что двигатель начинает вращаться при 3,5 В, а при 5-6 В появляется приличная мощность на валу. Если нажать пусковую кнопку при подаче на него 12 В, срабатывает защита у блока питания – значит, ток потребления превышает 4 А (защита настроена на это значение). Если шуруповёрт запустить на низком напряжении, а потом его повысить до 12 В – работает нормально, ток потребления около 2 А, но в тот момент, когда вкручиваемый шуруп входит наполовину в доску, защита у блока питания опять срабатывает.

    Чтобы посмотреть полную картину потребляемых токов, шуруповёрт подключили к автомобильному аккумулятору, поставив в разрыв плюсового провода резистор сопротивлением 0,1 Ом (рис.5 ). Напряжение падения с него подавали в компьютерную , для просмотра использовали программу . Получившийся график показан на рисунке 6 .

    Первый импульс слева – пусковой при включении. Видно, что максимальное значение достигает 1,8 В и это говорит о протекающем токе 18 А (I=U/R). Затем, по мере набора двигателем оборотов, ток падает до 2 А. В средине второй секунды головка шуруповёрта зажимается рукой до срабатывания «трещётки» - ток в это время возрастает примерно до 17 А, затем падает до 10-11 А. В конце 3-ей секунды пусковая кнопка отпущена. Получается, что для работы шуруповёрта требуется блок питания с возможностью отдавать мощность 200 Вт и ток до 20 А. Но, учитывая, что на аккумуляторном отсеке написано, что он на 1,3 А/ч (рис.7 ), то, скорее всего, всё не так плохо, как кажется на первый взгляд.

    Вскрываем блок питания выжигателя, меряем выходные напряжения. Максимальное – около 8,2 В. Мало, конечно. Учитывая падение напряжения на диодах выпрямителя, выходное напряжение на фильтрующем конденсаторе будет около 10-11 В. Но деваться некуда, пробуем собрать схему по рисунку 8 . Диоды использованы марки КД2998В (Imax=30 А, Umax=25 В). Крепление диодов VD1-VD4 выполнено навесным монтажом на лепестках контактных гнёзд выжигателя (рис.9 и рис.10 ). В качестве конденсатора большой ёмкости использовано параллельное включение 19-ти штук меньшей ёмкости. Вся «батарея» обмотана малярным скотчем и конденсаторы подобраны таких размеров, чтобы вся связка с лёгким усилием входила в аккумуляторный отсек шуруповёрта (рис.11 и рис.12 ).

    В выжигателе очень неудобно стоит предохранительная колодка, поэтому она была убрана, а предохранитель подпаян «напрямую» между одним из проводов 220 В и выводом помехоподавляющего конденсатора С1 (рис.13 ). При закрывании корпуса сетевой провод туго обжимается проходным резиновым кольцом и это не позволяет проводу болтается внутри при изгибании его снаружи.

    Проверка работоспособности шурупововёрта показала, что всё работает нормально, трансформатор после получасового сверления и закручивания саморезов нагревается примерно до 50 градусов по Цельсию, диоды нагреваются до такой же температуры и в радиаторах не нуждаются. Шуруповёрт с таким блоком питания имеет меньшую мощность в сравнении с запиткой его от автомобильного аккумулятора, но это понятно – напряжение на конденсаторах не превышает 10,1 В, а во время увеличения нагрузки на валу ещё дополнительно уменьшается. Кстати, прилично «теряется» на питающем проводе длиной около 2 метров, даже применяя его сечением 1,77 кв.мм. Для проверки падения на проводе была собрана схема по рисунку 14 , в ней контролировалось напряжение на конденсаторах и напряжение падения на одном проводнике питающего провода. Результаты в виде графиков при разных нагрузках показаны на рисунке 15 . Здесь в левом канале – напряжение на конденсаторах, в правом – падение на «минусовом» проводе, идущем от выпрямительного моста к конденсаторам. Видно, что во время остановки головки шуруповёрта рукой, напряжение питания просаживается до уровней ниже 5 В. На шнуре питания при этом падает примерно 2,5 В (2 раза по 1,25 В), ток носит импульсный характер и связан с работой выпрямительного моста (рис.16 ). Замена шнура питания на другой, с сечением около 3 кв.мм привела к повышению нагрева диодов и трансформатора, поэтому вернули назад старый провод.

    Посмотрели ток в цепи между конденсаторами и самим шуруповёртом, собрав схему по рисунку 17 . Получившийся график – на рисунке 18 , «лохматость» - это пульсации 100 Гц (то же, что и на предыдущих двух рисунках). Видно, что пусковой импульс превышает значение 20 А – скорее всего, это связано с меньшим внутренним сопротивлением источника питания за счёт использования параллельного включения конденсаторов.

    В конце замеров посмотрели ток через диодный мост, включив между ним и одним из выводов вторичной обмотки резистор 0,1 Ом. График на рис.19 показывает, что при торможении двигателя ток достигает значения 20 А. На рис.20 – растянутый по времени участок с максимальными токами.

    В результате, пока решили поработать с шуруповёртом с описанным блоком питания, если же будет "не хватать мощности", то придётся искать более мощный трансформатор и ставить диоды на радиаторы или менять на другие.

    И, конечно же, не стоит воспринимать этот текст как догму - абсолютно нет никаких препятствий для изготовления БП по любой другой схеме. Например, трансформатор можно заменить на ТС-180, ТСА-270, или можно попробовать запитать шуруповёрт от компьютерного импульсного БП, но, скорее всего, понадобится проверка возможности отдачи цепи +12 В тока 25-30 А...

    Андрей Гольцов, г. Искитим

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    Рисунок №8
    VD1-VD4 Диод КД2998В 4 В блокнот
    C1 Конденсатор 1.0 мкФ 1 400 В В блокнот
    C2 Конденсатор 0.47 мкФ 1 160 В В блокнот
    C3 Конденсатор электролитический 2200 мкФ 15 16 В

    На просторах интернета встречается множество схем импульсных блоков питания для шуруповертов. Они или сложны и врятли поместятся в батарейный отсек, или слишком сырые, недоработанные и ненадежные. Глядя на подобные схемы возникает много вопросов, ответов на которые нет.

    Данный блок питания адаптируется под любой батарейный шуруповерт путем подбора вторичной обмотки, помещается в корпус батарейного NiCd отсека и самое главное - уверенно переносит "холодный" старт двигателя. Известно, что двигатель шуруповерта имеет значительный стартовый ток, который способен вывести из строя даже мощные ИБП или как минимум спровоцировать срабатывание защиты. Описываемое устройство справляется с большими импульсами тока, обладая при этом довольно простой конструкцией.

    Схема

    Вот несложная схема блока, схема была нарисована на скорую руку, может позже уделю ей время и перерисую в более понятный вид. Картинка увеличивается по нажатию.

    Прототипом взята схема из советских времен и усовершенствована с помощью советов обитателей форума "Радиокот". По сути это схема электронного трансформатора с "лишними" для китайских производителей деталями. Добавлен узел обратной связи по напряжению, он выделен красным. В идеале эта часть схемы не задействована, но это в процессе наладки.

    Транзисторы взяты SBW13009 с запасом, это повышает надежность блока в целом. Схема обладает весьма полезным свойством: благодаря резисторам в эмиттерных цепях, блок во время холодных пусков, когда токи значительно превышают номинальные - повышает частоту преобразования. Благодаря этому импульсы больших токов ему не страшны. Запуск выполнен на VS1 и блокируется диодом VD5, когда устройство выходит на автогенераторный режим. В процессе опытов с блоком было решено отказаться от узла защиты, которая блокирует запуск при перегрузке - с шуруповертом она будет только мешать.

    По совету "радиокотов" был введен снаббер C5R3, он снижает обший уровень помех от блока, уменьшает потери на коммутацию транзисторов и предотвращает появление сквозных токов. Выпрямление во вторичной цепи происходит по схеме со средней точкой, благодаря такому решению количество диодов уменьшено до 2 (диодная сборка) и уменьшены потери на тепло. Так же, для уменьшения потерь взята сборка из диодов Шоттки.

    В отличие от электронного трансформатора (ЭТ) в схеме реализованы две обратные связи, по току и по напряжению. Благодаря этому блок запускается без нагрузки. Однако практика показывает, при работе вхолостую нагреваются силовые ключи, поэтому если удается добиться уверенного пуска шуруповерта без ОС по напряжению - C15 попросту не впаивается в схему.

    Конденсаторный баян на выходе, вместо одного электролита необходим по причине тех же больших пусковых токов. Когда у меня стоял один конденсатор, его выводы плавились при определенном положении кнопки шурика. То есть выводы одного конденсатора не рассчитаны на такие токи, в принципе, как и сам одиночный конденсатор.

    Резистор R8 выполняет две роли: первая - это не позволяет на холостом ходу развиться напряжению выше номинального, вторая - с отключенной ОС по напряжению дает пусковой ток во вторичной цепи и позволяет запуститься ШИМ-у шуруповерта.

    Перемычка "П" используется в процессе наладки блока, при первом пуске и настройке вместо нее подключается лампа накаливания 100Вт, при испытании на шуруповерте просто замыкается перемычкой или предохранителем.

    Детали

    Рассмотрим используемые детали и возможность их замены.

    Транзисторы

    В качестве силовых ключей VT1-VT2 использованы биполярные n-p-n транзисторы SBW13009 в корпусе TO-3PN. Встречаются они в качественных АТХ-блоках, иных мощных импульсниках. В компьютерных АТХ обычного качества чаще встречаются MJE13009 в корпусах TO-220, их токовые параметры в два раза меньше. Их так же можно использовать, но нужно 4 транзистора вместо 2 и включать их нужно попарно, с индивидуальным резистором в эмиттере.

    Данные транзисторы используются в мощных ИБП, поэтому снять их откуда-либо получится редко. А использовать MJE13009 как замену я бы не рекомендовал. Лучше раскошелиться на мощные, стоимость их в районе ста рублей за штуку.

    Коммутирующий трансформатор

    Трансформатор Тр2 намотан на колечке из феррита с прямоугольной петлей намагничивания. Такие кольца встречаются в подобных автогенераторных преобразователях - ЭТ, балласт энергосберегающей люминесцентной лампы. В светодиодных лампах таких колец нет! Категорически не рекомендую использовать обычный феррит, блок будет работать, но очень ненадежно, на транзисторах будет рассеиваться много тепла, сквозные токи будут обычным делом. Желтые кольца из компьютерной техники так же не подойдут!



    Вариант извлечения из ЛДС энергосберегающей лампы мне кажется самым доступным - колечко можно взять из сгоревшей лампы. Так как обмотки будут выполнены обмоточным эмалированным проводом, нужно покрыть кольцо парой слоев цапонлака, на крайняк лаком для ногтей без блесток. Главное проследить чтобы лак попал на всю поверхность, в том числе на внутреннюю сторону. Лак выступает в качестве дополнительной изоляции.

    Все обмотки выполнены эмалированным проводом ПЭЛ или подобным, если имеется ПЭЛШО (в дополнительной шелковой оплетке) это еще лучше. Обмотка 1 содержит один законченный виток провода не тоньше 0.8 мм. Для дополнительной изоляции его лучше поместить в отрезок изоляции монтажного провода. Обмотки 2,3,4 содержат по 4 витка 0.3-0.4 мм. Очень важно мотать все обмотки в одну сторону и помечать начало, и конец!

    Силовой трансформатор

    Трансформатор Тр1 намотан на двух сложенных вместе ферритовых кольцах К31х18.5х7 М2000НМ. Первичная обмотка содержит 82 витка провода 0.6 мм. Обмотка намотана по всей окружности кольца. Кольца изначально изолированы от обмотки, так же между обмотками следует выполнить надежную изоляцию. Я использовал изоленту, но лучше использовать более термостойкую, например лакоткань.

    Сетевую обмотку следует аккуратно уложить виток к витку по всей окружности. Если провод не влез в один слой - нужно изолировать первый и домотать вторым слоем. Для намотки удобно использовать челнок-мотовило из более толстой проволоки.

    Данные вторичной обмотки зависят от рабочего напряжения шуруповерта, для 12-вольтового 8+8 витков (16 витков в одну сторону с отводом от середины) провода не тоньше 1.4 мм. Вообще диаметр провода вторичной обмотки следует брать максимально возможный. Лучше мотать жгутом из нескольких жил (4-5 шт) провода 0.8-1 мм. Главное, чтобы обмотка уместилась в окно колец. Я к примеру, взял провод с дросселя АТХ. Про точный подбор витков для шуруповертов более 12 В или меньше немного ниже.

    Во время намотки вторичной обмотки следует оставить свободное место под 2 витка обмотки номер три. Выполнить ее можно как эмалевым проводом 0.3, так и монтажным. Обмотки один и три следует помечать, где начала.

    Два витка обмотки 3 должны находиться на свободном от вторичной обмотки месте.

    Для трансформатора можно использовать ферритовые кольца проницаемостью 2000 других, близких размеров, главное, чтобы площадь поперечного сечения колец была не меньше. В магазине я нашел кольцо R36x23x15 PC40, в недалеком будущем испытаю его. Такое колечко может заменить два К31х18.5х7. Аналогично коммутирующему трансу, желтые комповские кольца неприменимы!

    Некоторые умельцы на форумах утверждают, что мотали данный трансформатор на кольце К28Х15Х11. Возможно так и было с другими намоточными данными (первичка 100+ витков), я не рекомендую рассматривать такой вариант - нужно обладать нехилым мастерством, чтобы уложить все обмотки на маленькое кольцо!

    Если для обмоток используется б/у-шный провод, следует пристально следить, чтобы лаковая изоляция не была повреждена!

    Дроссель

    А вот для дросселя L1 желтое колечко наоборот в самый раз! Точнее не любое желтое, а именно с дросселя групповой стабилизации (ДГС) из компьютерного блока питания. Я применил кольцо с внешним диаметром 27 мм. Намотать нужно не менее 20 витков проводом, сечением не ниже, чем у вторичной обмотки Тр1.

    Конденсаторы

    Все конденсаторы "горячей" части схемы должны быть рассчитаны не менее чем на 400В. В качестве C3-C4 я применил пленочные из АТХ, они на 250В, терпимо, но лучше ставить на 400. Емкость их может быть ниже, но тогда может произойти снижение мощности. Так же можно снизить C2 с 200 мкф до 100, возможно, тогда падение напряжения на нагрузке будет более крутым.

    Конденсатор снаббера C5 минимум на 1000В, изначально берется 3.3n и подбирается по нагреву резистора. C15 достаточно на напряжение 50В.

    В низковольтной части C6-C7 не ниже 50В, электролитические C8-C14 не ниже 25В. Количество электролитических кондеров не принципиально, главное не меньше 5 шт, номиналом 100-1000 мкф.

    Резисторы

    Резисторы берутся согласно указанных на схеме номиналов и мощностей. R3 взят из снаббера АТХ, габариты его несколько больше стандартных 2ВТ, поэтому не могу сказать о его мощности точно. Данный резистор может прилично греться, поэтому мощность его лучше брать побольше.

    В качестве R1 взят термистор из того же АТХ, он очень малогабаритный. В крайнем случае его можно заменить на резистор 3-5 Ом 5Вт, но он занимает много места.

    Диоды

    Диодный мост VDS1 на 3-4А из полюбившегося АТХ, можно заменить на четыре диода 400В 3А. Диоды FR107 взяты оттуда же, меняются на любые другие с обратным напряжением не менее 1000В. Динистор VS1 можно взять из сгоревшей лампы вместе с кольцом, как правило, динистор целый.

    Диодная сборка из двух диодов Шоттки VD3-VD4 - S30D40C взята с 5-вольтовой шины АТХ. Держит она 40В и 30А. Вообще, эти диоды можно взять на свое усмотрение, напряжение должно превышать рабочее в два раза и ток 15-20А. Для не слишком мощных шуруповертов можно брать сборку с 12-вольтовой шины АТХ, это актуально, когда напряжение питания шуруповерта превышает 20В, 40-вольтовая S30D40C становится не так надежна. Запас по напряжению необходим, ибо на выходе силового трансформатора могут присутствовать выбросы, превышающие номинальные значения.

    Налаживание

    Для налаживания следует собрать схему на макетной плате, категорически не советую собирать сразу рабочую конструкцию. Слишком большой разброс параметров трансформаторов может потребовать дополнительных решений.

    Первый пуск

    Для первого включения вместо перемычки "П" подключается лампа накаливания 220В 100Вт. Так же, на выход нужно подключить лампу 20-30Вт, автомобильную или галогенку 12В. Перед пуском C15 выпаивается. Правильно собранный блок начинает работать сразу: при включении галогенка на выходе светится (напряжение около 14В), защитная лампа слабо тлеет. При включении без нагрузки в трансформаторе Тр1 слышен слабый писк - это попытки пуска VS1. Защитная лампа не должна вспыхивать при включении, без нагрузки на выходе блока лампа даже не тлеет.

    Работа без нагрузки

    Если все совпадает с описанным - можно продолжать, если нет - ищем ошибки в монтаже или неисправные компоненты. Далее нужно определить надобность ОС по напряжению - на выход следует подключить шуруповерт. При включении шура, он должен запускаться, защитная лампа вспыхивать. Возможно, пусковых импульсов будет недостаточно для старта электроники шуруповерта. На выход подключают вольтметр и контролируют напряжение, оно должно быть в районе рабочего. При напруге в 2-3В следует уменьшить сопротивление R8, чтобы на выходе появилось устойчивое 13-15В. Резистор R8 не должен греться, максимум чуть теплым, для меньшего нагрева можно увеличить его рассеиваемую мощность. Если удалось подобрать резистор и шурик работает без дополнительной нагрузки - ОС по напряжению не нужна и C15 не понадобится вообще. При включенном блоке и не нажатой кнопке шуруповерта из блока слышен слабый писк.

    При работе на галогенку транзисторы практически не греются, при работе без нагрузки нагрева нет. Максимум, что должно греться во всей схеме - резистор снаббера R3, но это пока не важно.

    Если все-таки шуруповерт не запускается из-за низкого начального напряжения и подбор R8 ничего не дал, в пределах разумного, без нагрева - придется делать ОС по напряжению. Следует подключить цепь с C15, и включить блок без нагрузки. Напряжение на выходе должно быть 13-14В (при указанных намоточных данных вторички). Если блок не хочет запускаться, следует увеличить емкость C15. Так же, следует попробовать поменять местами выводы обмотки 3 силового транса. В итоге нужно добиться стабильного пуска без нагрузки с минимальной емкостью C15. При включениях защитная лампа не должна вспыхивать и даже тлеть. Недостатком ОС по напряжению может стать небольшой нагрев транзисторов на холостом ходу. Нужно погонять блок 5-10 минут для определения приемлемости нагрева.

    Альтернативой для холостого запуска может стать дроссель от ЛДС энергосберегайки, включенный параллельно первичной обмотке силового трансформатора. Данный метод обладает высокой стабильностью, однако на предмет нагрева мной не исследовался.

    Результатом налаживаний должен стать стабильный пуск блока (с ОС по напр.) или попытки пуска с напряжением на выходе, достаточным для запуска электроники кнопки. На холостом ходу ничего не должно греться, ну или греться незначительно. Исключение может составлять резистор снаббера R3, но это уже следующим этапом.

    Вольтаж шуруповерта

    Намоточные данные вторичной обмотки 8+8 витков рассчитаны на шуруповерт 12В. Могу с уверенностью сказать, что данная обмотка подойдет к профессиональны моделям 14,4В. Я подключал блок к своему рабочему шуруповерту 14,4В на литиевой батарее, который без проблем закручивает саморезы 4Х80 мм в сырое дерево без предварительного сверления. Такие саморезы от блока конечно не закручивал, но кожу подсодрал, пытаясь остановить вал.

    Если вольтаж вашего отличается от 12В, то следует подкорректировать намоточные данные обмотки 2. Доматывая или отматывая витки, нужно мерить напряжение с нагрузкой - галогенной лампой 30Вт, без нагрузки напряжение будет немного больше. Я ориентировался на напряжение питания (12В) + 1В на просадку (можно не учитывать). Вообще, если шуруповерт 14,4В, не следует сразу мотать лишние витки, возможно все будет работать с должной мощностью без добавления витков. Так же хочу отметить 18В шуруповерты - несмотря на надписи на корпусе, зачастую там стоят двигатели на 12В. Про испытания на мощность немного ниже.

    Так же нужно иметь в виду, что без нагрузки блок может развивать немного большее напряжение, поэтому хорошим делом будет поискать датащиты на кнопку и максимальное напряжение ее ШИМ-а. Самое главное, чтобы напруга на ХХ не превышала этот максимум. Между прочим, на аккумуляторной батарее шуруповерта без нагрузки так же напряжение немного выше номинального, для 14,4В батареи это 16 с небольшим вольт. Однако, из-за сложности подобрать напряжение обмотки точно, блок может выдавать немного больше или меньше, чем на батарее. В общем здесь все подбирается экспериментально и с головой, а если вы собрали макетный блок - голова работает.

    Рабочий пуск

    Теперь следует снять защитную лампу и заменить ее перемычкой или предохранителем 3-4А. Не уверен, что от предохранителя есть толк, я его ставил для самоуспокоения. Попробовать пуск с галогенкой на выходе, холостом ходу - все должно быть стабильно и без перегрева.

    Теперь можно подключать шуруповерт и оценить мощность вращения. Мой зеленый бош работал так, что наверное с новой батареей было меньше мощности, при этом не перегревался. Для защиты шуруповетра от слишком больших токов в разрыв цепи можно воткнуть ограничительный шунт, заодно и померить токи. Защиту на полевом транзисторе делать я не стал, да и толку от нее не вижу: напряжение падает пропорционально увеличению тока, импульсы тока при слабом нажатии кнопки огромны (хоть и очень короткие) и будут заставлять защиту включаться.

    Необходимо проверить конденсаторный баян на выходе на нагрев при больших нагрузках. У меня фиксировалась самая большая нагрузка в момент слабого нажатия кнопки, когда двигатель пищит. При этом ноги одиночного конденсатора обгорали.

    Я не смог остановить шуруповерт рукой никак! Зато натер приличные мозоли! Все-таки ограничительный шунт не помешает в рабочем блоке, здесь следует руководствоваться ощущением силы вращения, а не измерениями, и контролировать нагрев двигателя. Я шунт не поставил в конечную версию, слишком много места он занимает. Ориентировочно, шунт, ограничивающий ток в 20А это: 12В(по факту просядет ниже)/20А=0,6 Ом. Взять щунт 0,6 Ом и ориентируясь на мощность вращения корректировать в сторону уменьшения, пока не появится излишнего нагрева.

    Китайским мультиметром и шунтом я намерял максимальный ток где-то между 15 и 20А, это при торможении, на сколько хватало сил и руки. При слабо нажатой кнопке, когда двигатель пищит еще не запускаясь, токи были более 20А. Стоит отметить, что измерения очень приблизительные и могут сильно отличаться от реальности - цифровой мультиметр не в состоянии адекватно измерить пульсирующее напряжение на шунте. Если вы совсем новичок и не знаете, как измерить большой ток шунтом и мультиметром - про это будет небольшой обзорчик, а пока... Зачем оно вам надо?

    Снаббер

    Как я писал выше, цепочка C5R3 может сильно греться, точнее именно резистор. И даже если нагрева нет на ХХ или малых нагрузках, при большой нагрузке резистор может аж вонять. Объясняется это повышением частоты преобразования с повышением выходного тока, следовательно, сопротивление конденсатора уменьшается. Изначально C5 следует брать 3.3 нанофарада (3300 пФ) и подбирать по нагреву резистора, уменьшая емкость. Я остановился на 1000 пФ. Обратите внимание, что щупать детали следует на выключенном блоке и разряженном конденсаторе C2. Выпрямленное и отфильтрованное сетевое напряжение составляет около 310В!

    Не стоит уменьшать емкость конденсатора с запасом, чтобы нагрева не было вообще! Тогда от него будет мало толку. Нагрев должен быть терпимым для длительного использования.

    Печатная плата

    Я плохой проектировщик печаток, поэтому плата у меня получилась громоздкой, двухэтажной. Если кто будет разрабатывать свою печатную плату - буду благодарен если предоставите рисунок, контакты в подвале сайта.

    Два уровня платы сделаны из двух кусков стеклотекстолита 70Х70 мм. На первом этаже находятся фильтрующие конденсаторы, силовой трансформатор и мягкими проводами подпаяны транзисторы. Печатка прорезана острым резаком без всякого травления. Монтаж деалей обычный, в отверстие, рисунок со стороны медной фольги. Подпаянные транзисторы находятся на радиаторе под платой вместе с диодной сборкой Шоттки VD3, VD4.

    Платы соединены между собой медным одножильным монтажным проводом, перемычка с эмиттера VT1 лишняя, она задумывалась для работы защиты, от которой я отказался.

    Вторая плата выполнена поверхностным монтажем. У меня влезли не все выходные конденсаторы, пришлось их добавлять в корпус батареи.

    На вторую плату подается сетевое напряжение, с нее же берется выходное. С диодной сборки приходит +, на которую в свою очеред приходят крайние выводы вторички Тр1. При уверенной работе без ОС по напряжению, цепь с С15 не нужна, как и соответствующие этой цепи обмотки.

    На плату не влезли все конденсаторы выходного конденсаторного баяна, поэтому несколько конденсаторов пришлось расположить в клеммном углублении батарейного отсека.

    Дно батарейного корпуса пришлось вырезать, так как плата не влезла полностью, к тому же для надежности был использован радиатор. В конечном итоге у меня получился такой блок:

    При грамотном проектировании и использовании подходящих компонентов, блок все-таки можно поместить в родной корпус батареии не вылазия за его пределы. Мне это почти удалось. С другой стороны, если использовать блок отдельно от шуруповерта, можно вообще не переживать за габариты. Однако в таком случае придется использовать провод от преобразователя до шурика сечением не менее 2,5 мм2. На 4-х метровом проводе 1,5 мм2 мощность немного падает.

    Данное решение является интересным с точки зрения применения: никаких ШИМ-ов и сложных схем, его можно применять для питания различных мощных приборов. Не зря ведь эту схему широко используют для питания галогенных ламп!

    На этом мы закончим описание, позднее здесь же дам объективную оценку использования блока в реальных, рабочих условиях стройки. Предварительная оценка по мощности вращения: 5+!





    

    2024 © winplast.ru.