Чему равен десятичный логарифм нуля. Что такое десятичный логарифм? Характерные признаки десятичных логарифмов


Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x — это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x — это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Приведены основные свойства логарифма, график логарифма, область определения, множество значений, основные формулы, возрастание и убывание. Рассмотрено нахождение производной логарифма. А также интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Содержание

Область определения, множество значений, возрастание, убывание

Логарифм является монотонной функцией, поэтому экстремумов не имеет. Основные свойства логарифма представлены в таблице.

Область определения 0 < x < + ∞ 0 < x < + ∞
Область значений - ∞ < y < + ∞ - ∞ < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 x = 1 x = 1
Точки пересечения с осью ординат, x = 0 нет нет
+ ∞ - ∞
- ∞ + ∞

Частные значения


Логарифм по основанию 10 называется десятичным логарифмом и обозначается так:

Логарифм по основанию e называется натуральным логарифмом :

Основные формулы логарифмов

Свойства логарифма, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей преобразуются в суммы членов.
Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов преобразуются в произведения сомножителей.

Доказательство основных формул логарифмов

Формулы, связанные с логарифмами вытекают из формул для показательных функций и из определения обратной функции.

Рассмотрим свойство показательной функции
.
Тогда
.
Применим свойство показательной функции
:
.

Докажем формулу замены основания.
;
.
Полагая c = b , имеем:

Обратная функция

Обратной для логарифма по основанию a является показательная функция с показателем степени a .

Если , то

Если , то

Производная логарифма

Производная логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Для нахождения производной логарифма, его нужно привести к основанию e .
;
.

Интеграл

Интеграл от логарифма вычисляется интегрированием по частям : .
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
.
Выразим комплексное число z через модуль r и аргумент φ :
.
Тогда, используя свойства логарифма, имеем:
.
Или

Однако, аргумент φ определен не однозначно. Если положить
, где n - целое,
то будет одним и тем же числом при различных n .

Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также:

Из программы средней школы известно, что

любое положительное число можно представить как число 10 в какой-то степени.

Однако это просто в том случае, когда число кратно 10.
Пример :

  • число 100 − это 10х10 или 102
  • число 1000 −это 10х10х10 или 103
  • и т.д.

Как же быть в том случае, если, например, надо выразить число 8299 как число 10 в какой-то степени? Как найти это число с определённой степенью точности, которое в данном случае равно 3,919…?

Выход - это логарифм и логарифмические таблицы

Знание логарифмов и умение пользоваться логарифмическими таблицами позволяет значительно упростить многие сложные арифметические операции.Для практического применения удобны десятичные логарифмы.

Историческая справка .
Принцип, лежащий в основе любой системы логарифмов, известен очень давно и может быть прослежен вглубь истории вплоть до древневавилонской математики (около 2000 года до н.э.). Однако первые таблицы логарифмов составили независимо друг от друга шотландский математик HUДж. Непер (1550—1617) U Hи швейцарец И. Бюрги (1552—1632). Первые таблицы десятичных логарифмов были составлены и опубликованы английским математиком Г. Бриггсом (1561 —1630).

Предлагаем читателю, не вдаваясь глубоко в математическую суть вопроса, запомнить или восстановить в памяти несколько простейших определений, выводов и формул:

  • Определение логарифм а.

Логарифмом данного числа называется показатель степени, в которую нужно возвести другое число, называемое основанием логарифма (а ), чтобы получить данное число.

  • При всяком основании, логарифм единицы есть нуль:

а0 = 1

  • Отрицательные числа не имеют логарифмов
  • Всякое положительное число имеет логарифм
  • При основании, большем 1, логарифмы чисел, меньших 1, отрицательны, а логарифмы чисел, больших 1, положительны
  • Логарифм основания равен 1
  • Большему числу соответствует больший логарифм
  • С возрастанием числа от 0 до 1 логарифм его возрастает от - до 0; с возрастанием числа от 1 до + логарифм его возрастает от 1 до + (где, ± − знак, принятый в математике для обозначения отрицательной или положительной бесконечности чисел)
  • Для практического применения удобны логарифмы, основанием которых является число10

Эти логарифмы называются десятичными и обозначаются lg . Например:

            • логарифм числа 10 по основанию 10 равен 1. Иначе говоря, число 10 нужно возвести в первую степень, чтобы получить число 10 (101 = 10), т.е. lg10 = 1
            • логарифм числа 100 по основанию 10 равен 2. Иначе говоря, число 10 нужно возвести в квадрат, чтобы получить число 100 (102 = 100),т.е. lg100 = 2

UВывод №1 U: логарифм целого числа, изображаемого единицей с нулями, есть целое положительное число, содержащее столько единиц, сколько нулей в изображении числа

            • логарифма числа 0,1 по основанию 10 равен -1. Иначе говоря, число 10 нужно возвести в минус первую степень, чтобы получить число 0,1 (10-1 = 0,1), т.е. lg0,1 = -1
            • логарифма числа 0,01 по основанию 10 равен -2. Иначе говоря, число 10 нужно возвести в минус вторую степень, чтобы получить число 0,1 (10-2 = 0,01), т.е. lg0,01 = -2

UВывод №2 U: логарифм десятичной дроби, изображаемой единицею с предшествующими нулями, есть целое отрицательное число содержащее столько отрицательных единиц, сколько нулей в изображении дроби, считая, в том числе, и 0 целых

            • в соответствии с определением №1 (см. выше):

lg1 = 0

            • логарифм числа 8300 по основанию 10 равен 3,9191… Иначе говоря, число 10 нужно возвести в степень 3,9191… , чтобы получить число 8300 (103,9191…= 8300), т.е. lg8300 =3,9191…

UВывод №3 U: логарифма числа, не выраженного единицей с нулями, есть число иррациональное и, следовательно, не может быть выражен точно посредством цифр.
Обыкновенно иррациональные логарифмы выражают приближенно в виде десятичной дроби с несколькими десятичными знаками. Целое число этой дроби (хотя бы это было „0 целых") называется характеристикой , а дробная часть — мантиссой логарифма. Если, например, логарифм есть 1,5441 , то характеристика его равна 1 , а мантисса есть 0,5441 .

      • Основные свойства логарифмов, в т.ч. десятичных:
        • логарифм произведения равен сумме логарифмов сомножителей: lg( a. b)= lgа + lgb
        • логарифм частного равен логарифму делимого без логарифма делителя, т.е. логарифм дроби равен логарифму числителя без логарифма знаменателя:
        • логарифмы двух взаимообратных чисел по одному и тому же основанию отличаются друг от друга только знаком
        • логарифм степени равен произведению показателя степени на логарифм её основания, т.е. логарифм степени равен показателю этой степени, умноженному на логарифм возводимого в степень числа:

lg( bk)= k. lg b

Чтобы окончательно понять, что такое десятичный логарифм произвольного числа, детально рассмотрим несколько примеров.

UПример №2.1.1 U.
Возьмем какое-нибудь целое, например 623 и смешанное число, например 623,57.
Мы знаем, что логарифм числа состоит из характеристики и мантиссы.
Сосчитаем, сколько цифр в данном целом числе, или в целой части смешанного числа. В наших примерах этих цифр 3.
Поэтому каждое из чисел 623 и 623,57 больше 100, но меньше 1000.
Таким образом можно сделать вывод, что логарифм каждого из этих чисел будет больше lg 100, т. е. больше 2, но меньше lg 1000, т. е. меньше 3 (вспомним, что большее число имеет и больший логарифм).
Следовательно:
lg 623 = 2,...
lg 623,57 = 2,...
(точки заменяют собою неизвестные мантиссы).

UВывод №4 U: десятичные логарифмы обладают тем удобством, что их характеристику всегда можно найти по одному виду числа .

Пусть вообще в данном целом числе, или в целой части данного смешанного числа, содержится m цифр. Так как самое малое целое число, содержащее m цифр, есть единица с m-1 нулями на конце, то (обозначая данное число N) можем написать неравенство:


следовательно,
m-1 < lg N < m,
поэтому
lg N = (m-1) + положительная дробь.
значит
характеристика lgN = m-1

UВывод №5 U: характеристика десятичного логарифма целого или смешанного числа содержит столько положительных единиц, сколько цифр в целой части числа без одной.

UПример №2.1.2.

Теперь возьмём несколько десятичных дробей, т.е. чисел меньших 1 (другими словами имеющих 0 целых):
0,35; 0,07; 0,0056; 0,0008 и т. п.
Логарифмы каждого из этих чисел будут находиться в промежутке между двумя целыми отрицательными числами, различающимися на одну единицу. Причём каждый из них равен меньшему из этих отрицательных чисел, увеличенному на некоторую положительную дробь.
Например,
lg0,0056= -3 + положительная дробь
В данном случае положительная дробь будет равна 0,7482.
Тогда:
lg 0,0056 = -3 + 0,7482
UПримечания U:
Такие суммы, как -3 + 0,7482, состоящие из целого отрицательного числа и положительной десятичной дроби, условились при логарифмических вычислениях писать сокращенно так:
,7482
(такое число читается: с минусом, 7482 десятитысячных), т. е. ставят знак минус над характеристикой с целью показать, что он относится только к этой характеристике, а не к мантиссе, которая остается положительной.

Таким образом, приведенные выше числа можно записать в виде десятичных логарифмов
lg 0,35 =, …
lg 0,07 =, …
lg 0,00008 =, …
Пусть вообще число A есть десятичная дробь, у которой перед первой значащей цифрой α стоит m нулей, считая, в том числе, и 0 целых:

тогда, очевидно, что

Следовательно:

т. е.
-m < log A < -(m-1).
Так как из двух целых чисел:
-m и -(m-1) меньшее есть -m
то
lg А = -m + положительная дробь

UВывод №6 U: характеристика логарифма десятичной дроби, т.е. числа меньшего 1, содержит в себе столько отрицательных единиц, сколько нулей в изображении десятичной дроби перед первой значащей цифрой, считая, в том числе, и нуль целых; мантисса же такого логарифма положительна

Пример №2.1.3.

Умножим какое-нибудь число N (целое или дробное — всe равно) на 10, на 100 на 1000..., вообще на 1 c нулями, и посмотрим, как от этого изменится lg N.
Так как логарифм произведения равен сумме логарифмов сомножителей, то
lg (N.10) = lg N + lg 10 = lg N + 1;
lg (N.100) = lg N + lg 100 = lg N + 2;
lg (N.1000) = lg N + lg 1000 = lg N + 3 и т. д.

Когда к lg N мы прибавляем какое-нибудь целое число, то это число всегда прибавляется к характеристике; при этом мантисса всегда остаётся в этих случаях неизменной.

Пример
если lg N = 2,7804, то 2,7804 + 1 =3,7804; 2,7804 + 2 = 4,7801 и т. п.;
или если lg N = 3,5649, то 3,5649 + 1 = 2,5649; 3,5649 - 2 = 1,5649, и т. п.

Вывод №7 : от умножения числа на 10, 100, 1000,.., вообще на 1 с нулями, мантисса логарифма не изменяется, а характеристика увеличивается на столько единиц, сколько нулей во множителе.

Подобно этому, приняв во внимание, что логарифм частного равен логарифму делимого без логарифма делителя, мы получим:
lg N/10 = lg N - lg 10 = lg N - 1;
lg N/100 = log N - log 100 = log N - 2;
log N/1000 = log N - log 1000 = log N - 3 и т. п.
Когда из lg N вычитается целое число из логарифма вычитать это целое число всегда следует из характеристики, а мантиссу оставлять без изменения. то можно сказать:

Вывод №8 : От деления числа на 1 с нулями мантисса логарифма не изменяется, а характеристика уменьшается на столько единиц, сколько нулей в делителе.

Вывод №9 : мантисса логарифма десятичного числа не изменяется от перенесения в числе запятой, потому что перенесение запятой равносильно умножению или делению на 10, 100, 1000 и т. д.

Таким образом, логарифмы чисел:
0,00423, 0,0423, 4,23, 423
отличаются только характеристиками, но не мантиссами (при условии, что все мантиссы положительны).

Вывод №9 : мантиссы чисел, имеющих одну и ту же значащую часть, но отличающихся только нулями на конце, одинаковы: так, логарифмы чисел: 23, 230, 2300, 23 000 отличаются только характеристиками.

\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

\(\log_{5}{25}=2\)

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

т.к. \(3^{4}=81\)

\(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

\(\log_{4}{16}=2\)

\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение :

\(\log_{4\sqrt{2}}{8}=x\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
\(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\) \(=3\)


Умножим обе части уравнения на \(\frac{2}{5}\)


Получившийся корень и есть значение логарифма

Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример : Решите уравнение \(4^{5x-4}=10\)

Решение :

\(4^{5x-4}=10\)

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

Перед нами . Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

\(5x=\log_{4}{10}+4\)

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ : \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^{\log_{a}{c}}=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если \(a^{b}=c\), то \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение :

Ответ : \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

И с одной третьей:

\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение :

Ответ : \(1\)







2024 © winplast.ru.