Биофизические процессы в клетке. Как происходит активное поглощение веществ клеткой? Механизмы поглощения веществ растительной клеткой


Все неорганические питательные вещества поглощаются в форме ионов, содержащихся в водных растворах. Поглощение ионов клеткой начинается с их поступления в апопласт и взаимодействия с клеточной стенкой. Ионы могут частично локализоваться в межмицеллярных и межфибриллярных промежутках клеточной стенки, частично связываться и фиксироваться в клеточной стенке электрическими зарядами. Поступившие в апопласт ионы легко вымываются. Объем клетки, доступный для свободной диффузии ионов, получил название свободного пространства. Свободное пространство включает межклетники, клеточные стенки и промежутки, которые могут возникать между клеточной стенкой и плазмалеммой. Иногда его называют кажущимся свободным пространством (КСП). Этот термин означает, что его рассчитываемый объем зависит от объкта и природы растворенного вещества. Так, для одновалентных ионов объем КСП будет больше, чем для двухвалентных. Кажущееся свободное пространство занимает в растительных тканях 5–10 % объема. Поглощение и выделение веществ в КСП – физико-химический пассивный процесс, независимый от температуры (в интервале +15 – +35 о С) и ингибиторов энергетического обмена. Клеточная стенка обладает свойствами ионообменника, так как в ней адсорбированы ионы Н+и НCO -3 , обменивающиеся в эквивалентных количествах на ионы внешнего раствора. Из-за преобладания отрицательных фиксированных зарядов в клеточной стенке происходит первичное концентрирование катионов (особенно двух- и трехвалентных). Второй этап поступления ионов – транспорт через плазмалемму. Транспорт ионов через мембрану может быть пассивным и активным. Пассивное поглощение не требует затрат энергии и осуществляется путем диффузии по градиенту концентрации вещества, для которого плазмалемма проницаема. Пассивное передвижение ионов определяется не только химическим потенциалом µ, как это имеет место при диффузии незаряженных частиц, но и электрическим потенциалом ε. Оба потенциала объединяют в виде электрохимического потенциала µ:

µ = µ + nFε,

где µ – химический, ε – электрический, µ – электрохимический потенциалы;

n – валентность иона; F – константа Фарадея.

Любая разность электрических потенциалов, которая возникает на мембранах, вызывает соответствующее перемещение ионов.

Пассивный транспорт может идти с участием переносчиков с большей скоростью, чем обычная диффузия, и этот процесс носит название облегченной диффузии. Известны высокоспецифические транслоказы – белковые молекулы, переносящие адениловые нуклеотиды через внутреннюю мембрану митохондрий: Nа+/Са2+-обменник – белок, входящий в состав плазматических мембран многих клеток; низкомолекулярный пептид бактериального происхождения валиномицин – специфический переносчик для ионов К+. Процесс

облегченной диффузии имеет ряд особенностей: 1) описывается уравнением Михаэлиса-Ментен и имеет определенные Vmax и Km; 2) селективен (обладает специфичностью к определенному иону); 3) подавляется специфическими

ингибиторами.

Диффузионным путем идет также и транспорт ионов через селективные ионные каналы – интегральные белковые комплексы мембран, образующие гидрофильную пору. Основной составляющей движущей силы этого транспорта является градиент электрохимического потенциала иона. Активность каналов модулируется мембранным потенциалом, рН, концентрацией

ионов и др. Активный транспорт веществ осуществляется против концентрационного градиента и должен быть сопряжен с энергодающим процессом. Основным источником энергии для активного транспорта является АТФ. Поэтому, как правило, активный транспорт ионов осуществляется с помощью транспортных АТФаз.

В сопрягающих мембранах имеются протонные насосы, работающие как Н+-АТФ-азы. В результате их функционирования на мембране возникают разность концентраций протонов (ΔрН) и разность электрических потенциалов, в совокупности образующие протонный электрохимический потенциал, обозначаемый ΔμН+. За счет работы Н+-АТФ-азы создается кислая среда в некоторых органеллах клетки (например лизосомах). В митохондриальной мембране Н+-АТФ-аза работает в обратном направлении, используя

ΔμН+, создаваемый в дыхательной цепи, для образования АТФ. Наконец, в клетках широко представлен вторично-активный транспорт, в процессе которого градиент одного вещества используется для транспорта другого. С помощью вторично-активного транспорта клетки аккумулируют сахара, аминокислоты и выводят некоторые продукты метаболизма, используя градиент Н+.

Пройдя через плазмалемму, ионы поступают в цитоплазму, где включаются в метаболизм клетки. Внутриклеточный транспорт ионов осуществляется благодаря движению цитоплазмы и по каналам эндоплазматического ретикулума. Ионы попадают в вакуоль, если цитоплазма и органеллы уже насыщены ими, или для пополнения пула осмотически активных частиц. Для того, чтобы попасть в вакуоль, ионы должны преодолеть еще один барьер – тонопласт. Транспорт ионов через тонопласт совершается также с помощью

переносчиков и требует затраты энергии. Переносчики, расположенные в тонопласте, имеют меньшее сродство к ионам и действуют при более высоких концентрациях ионов по сравнению с переносчиками плазмалеммы. В тонопласте была идентифицирована особая Н+-АТФаза. Она не тормозится диэтилстильбэстролом – ингибитором Н+-АТФазы плазмалеммы.

Взаимосвязь процессов поглощения веществ корнем с другими функциями растения (дыханием, фотосинтезом, водообменом, ростом, биосинтезом и др.); поглощение ионов клетками листа, отток ионов из листьев, перераспределение и реутилизация веществ в растении.

Известные исследователи (И. Кноп, Ю.Сакс, Д.Н.Прянишников и др.) установили, что потребность растения в отдельных зольных элементах изменяется на разных фазах его развития. Более высокие потребности связаны с активным метаболизмом, ростом и новообразованиями. При дефиците многих минеральных элементов симптомы голодания проявляются, в первую очередь, на старых органах. Это обусловлено тем, что регуляторные системы растения мобилизуют необходимые минеральные элементы и они транспортируются в молодые, активно растущие ткани. Очень подвижны азот, фосфор, калий. Плохо или совсем не реутилизируются бор и кальций. Для нормальной жизнедеятельности растений должно соблюдаться определенное соотношение различных ионов в окружающей среде. Чистые растворы одного какого-либо катиона оказываются ядовитыми. Так, при помещении проростков пшеницы на чистые растворы KCL или CaCL2 на корнях сначала появлялись вздутия, а затем корни отмирали. Смешанные растворы этих солей не обладали ядовитым действием. Смягчающее влияние одного катиона на действие другого называют антагонизмом ионов. Антагонизм ионов проявляется как между разными ионами одной валентности, например между ионами натрия и калия, так и между ионами разной валентности, например ионами калия и кальция. Одной из причин антагонизма ионов является их влияние на гидратацию белков цитоплазмы. Двухвалентные катионы (кальций, магний) дегидратируют коллоиды сильнее, чем одновалентные (натрий, калий). Следующей причиной антагонизма ионов является их кокуренция за активные центры ферментов. Так, активность некоторых ферментов дыхания ингибируется ионами натрия, но их действие снимается добавлением ионов калия. Кроме того, ионы могут конкурировать за связывание с переносчиками в процессе поглощения. Действие одного иона может и усиливать влияние другого. Это явление называется синергизмом. Так, под влиянием фосфора повышается положительное действие молибдена. Изучение количественных соотношений необходимых элементов позволило создать сбалансированные питательные смеси, растворы минеральных солей для выращивания растений. Хорошо известны смеси Кнопа, Пря нишникова, Гельригеля и др.

Исследования ученых школы Д. Н. Прянишникова показали, что каждый вид растения предъявляет специфические требования к количественным комбинациям отдельных зольных элементов. Было также установлено, что потребность растения в отдельных зольных элементах изменяется на разных фазах его развития. Таким образом, наилучшим питательным раствором для растения должен считаться раствор не постоянного, а переменного состава, изменяемый соответственно изменению потребностей растения на разных стадиях его развития. Это положение имеет громадное практическое значение, являясь основой нового метода искусственного поднятия урожайности. Работы Д. А. Сабинина позволили выяснить механизмы поступления воды и минеральных веществ в клетки корней растений, антагонизма и синергизма во взаимодействии ионов.

Поглощение питательных веществ клеткой.

Для осуществления всех процессов жизнедеятельности в клет-ку из внешней среды должны поступать вода и питательные веще-ства. Цитоплазма и ее пограничные мембраны - плазмалемма и тонопласт - обладают свойствами избирательной проницаемости. Под избирательной проницаемостью понимают способность актив-"1ю регулировать процесс поступления веществ: одни вещества пропускать с большей скоростью, другие - с меньшей или не пропускать совсем. Таким путем биологическая система может сохранять стабильность - гомеостаз и не смешиваться с окружа-ющей средой.

Поглощение может быть пассивным и активным. Пассивным называется перемещение веществ путем диффузии по электрохи-мическому (концентрационному и электрическому) градиенту.

Диффузия - движение молекул или ионов из области с высокой концентрацией в область с более низкой концентрацией. Ионы перемещаются через мембраны в том или ином направлении бла-годаря своей собственной кинетической энергии, не потребляя в этом процессе ни АТФ, ни другие источники энергии. Некоторые молекулы проникают растворяясь в липидах мембран или через специальные гидрофильные канальцы в мембранах. Так как ионы заряжены, скорость их диффузии определяется не только прони-цаемостью мембраны и различиями в концентрации ионов по обе ее стороны, но также электрическим потенциалом - напряжени-ем, возникающим между внутренней и внешней сторонами мем-браны. Обычно растительные клетки на внутренней стороне своих мембран имеют отрицательный потенциал, что приводит к пре-имущественному поглощению положительно заряженных ионов по сравнению с отрицательными.

Активный транспорт - это поглощение веществ через специ-фические зоны мембраны, называемые насосами, против элект-рохимического градиента с затратой энергии дыхания. Например, растительная клетка поглощает калий в количествах в сотни и тысячи раз больших, чем он имеется в окружающей среде.

Вода может поступать в клетки растений благодаря набуханию биоколлоидов, увеличению степени их гидратации. Это характер-но для сухих семян, помещенных в воду. Однако главный способ поступления воды в живые клетки - ее осмотическое поглоще-ние.

Большая часть присутствующей в клетке воды находится в ва-куоле. Там же содержится большое количество других веществ- сахаров, органических кислот, солей. Для того чтобы попасть в вакуоль, вода должна пройти сквозь стенку клетки, а также через две мембраны и лежащую между ними цитоплазму. Обычно эти три структуры рассматривают совместно как единый мембранный барьер, обладающий свойствами полупроницаемости, т. е. прони-цаемостью только для воды. Согласно молекулярно-кинетической теории, молекулы всех веществ находятся в состоянии быстрого хаотического движения, скорость которого зависит от энергии этих молекул. Молекулы воды малы и проходят через клеточные мемб-раны намного быстрее, чем молекулы других веществ. Они диф-фундируют во всех направлениях: в клетку и из клетки, в различ-ные клеточные органеллы и из них. Движение воды осуществляет-ся по градиенту ее активности„ которая характеризуется водным потенциалом. Молекулы содержащихся в вакуоле растворенных веществ снижают активность молекул воды в клетке. Вследствие этого кинетическая энергия воды в вакуоле ниже, чем кинетичес-кая энергия относительно более чистой воды вне клетки. В резуль-тате внутрь клетки в вакуоль проникает больше молекул воды, чем выходит из нее. Объем вакуоли увеличивается и создается тургор, в результате которого содержимое клетки прижимается к ее стенке.



Диффузия воды через полупроницаемую мембрану называется осмосом. Если два раствора разделены полупроницаемой мембра-ной, то вода из раствора с меньшей концентрацией веществ (ги-потонического) будет диффундировать в раствор с большей кон-центрацией веществ (гипертонический). Диффузия будет проис-ходить до тех пор, пока концентрации веществ в обоих растворах не станут одинаковыми (изотоническими).

Если в осмометре раствор сахарозы отделить от чистой воды полупроницаемой мембраной (рис. 8.2), то молекулы воды в силу диффузии будут перемещаться из чистой воды в раствор сахаро-зы, где концентрация воды меньше, т.е. от высокого водного по-тенциала к более низкому. Это приводит к увеличению объема раствора сахарозы и подъему жидкости в трубке осмометра. При этом повышается гидростатическое давление, под которым нахо-дится раствор в осмометре. При некоторой высоте столба раствора в трубке скорости диффузии воды сравняются и подъем его пре-кратится.

Наибольшее давление, которое способен преодолеть данный раствор, всасывая воду через полупроницаемую мембрану, яв-ляется его осмотическим давлением. Осмотический потенциал ра-створа прямо зависит от концентрации растворенного вещества и по величине равен потенциалу гидростатического давления, по противоположен ему по знаку. Он всегда имеет отрицатель-ное значение. Величина осмотического потенциала неоднознач-на у разных видов растений и в разных частях одного и того же растения. Для вакуолярного сока клеток корней она составляет 12 -13 ат., а для клеток надземных органов 10 – 26 ат. Это обуславливает вертикальный градиент асмотического потенциала и сосущей силы от корней к листьям. У растений- галофитов, растущих в условиях засоления, осмотический потенциал очень высок, достигая 150 ат.

Силу, с которой вода входит в клетку, называют сосуищей силой (5), она тождественна водному потенциалу клетки. Величина со-сущей силы определяется осмотическим давлением клеточного сока (z) и тургорным (гидростатическим) давлением в клетке

Рис. 8.2. Схема простейшего осмо-метра:

1 - сосуд с водой; Б - сосуд с 10%-м

раствором сахарозы (кружки - молеку-лы воды, овалы - молекулы сахарозы).

(Р), которое равно противодавлению клеточной стенки, возникающе-му при ее эластичном растяжении: S = к - Р.

В условиях разной оводненности соотношение между всеми компонентами этого уравнения меняется. Когда клетка полнос-тью насыщена водой (полностью тургесцентна), ее сосущая сила равна нулю, а тургорное давление равно потенциальному осмо-тическому: S= 0; Р= к. Состояние полного тургора наблюдается в клетках водных растений. Клетки наземных растений из-за транс-пирации почти никогда не бывают полностью насыщенными во-дой. Если подача воды к клетке уменьшается (при усилении вет-ра, при недостатке влаги в почве и т.д.), то вначале возникает водный дефицит в клеточных стенках, водный потенциал кото-рых становится ниже, чем в вакуолях, и вода начинает переме-щаться в клеточные стенки. Отток воды из вакуоли снижает тур-горное давление в клетках и, следовательно, увеличивает их сосу-щую силу. При длительном недостатке влаги большинство клеток теряет тургор и растение завядает. В этих условиях Р = 0; S = к. Обезвоживание клетки называется плазмолизом.

Явление плазмолиза можно наблюдать, помещая кусочки тка-ни в гипертонический раствор. Отток воды из клеток приводит к уменьшению объема протопластов и их отделению от клеточных стенок. Пространство между клеточной стенкой и сократившимся протопластом заполняет наружный раствор, который легко про-ходит через клеточную стенку, практически не препятствующую движению воды. Клетку в таком состоянии называют плазмолизи-рованной. При помещении клетки в чистую воду она может восста-новить свой тургор. Чрезмерный дефицит приводит к разрыву про-топластов и гибели клеток.

В условиях водного дефицита в молодых тканях резкое усиле-ние потери воды, например при суховее, приводит к потере тур-гора и протопласты, сокращаясь в объеме, не отделяются от кле-точных стенок, а тянут их вслед за собой. Клетки и ткани сжима-ются. Это явление называется циторризом.

растительный клеточный хлоропласт хлорофилл флавоноидный

В живой клетке растения всегда поддерживается определенное соотношение воды, солей и органических веществ, регулирующееся обменом веществ с окружающей средой, без которого жизнь невозможна. В клетке полупроницаемой перегородкой являются поверхностные слои протопласта, через которые легко проникают вода и растворенные в ней вещества. Различные вещества проникают также в клеточный сок. Без этого невозможным было бы поступление в клетку питательных веществ извне и передвижение их из одной клетки в другую, а следовательно, существование и самого растения. Способность цитоплазмы пропускать сквозь себя определенные вещества получила название проницаемости цитоплазмы.

Поступление питательных веществ в клетки -- результат активного процесса поглощения, которое подчинено законам диффузии. Но не все можно объяснить диффузией. На процессы поступления растворенных веществ, на проницаемость цитоплазмы влияют снабжение тканей кислородом, температура, наличие органических веществ, содержание солей в клетках, а также свойства и концентрация растворенных веществ в окружающем субстрате.

Поддержание проницаемости цитоплазмы на определенном уровне связано с сохранением баланса между ионами, содержащимися в окружающих клетку растворах и в самой цитоплазме; их соотношение определяет степень ее вязкости. Следовательно, проницаемость цитоплазмы зависит от ряда условий, а именно: характера самих веществ, которые содержатся в клетке, соотношения различных ионов минеральных веществ, температуры и других внешних условий.

Все органические вещества можно разделить на две группы: неполярные, у которых совпадают центры электрических зарядов, и полярные, у которых центры электрических зарядов не совпадают. У неполярных соединений преобладают группы --СН 3 , --С 2 Н 5 , --С 4 Н 9 , --С 6 Н 6 , у полярных -- ОН, --СООН, --NH 2 , --СОН, --CN, --CONH 2 , --SH, --NCS, а также группы, которые имеют двойные и тройные связи. Есть также соединения смешанного типа, которые одновременно полярны и неполярны. Такие соединения легко адсорбируются, например наркотики. Неполярными соединениями являются липиды, которые вместе с другими веществами входят в состав цитоплазмы. К полярным веществам относятся глюкоза, мочевина, глицерин, которые не растворяются в липидах, но легко проникают в клетку. Проникновение ионов в клетку происходит путем пассивного неметаболического поглощения в результате диффузии по градиенту концентрации соответственно кривой насыщения и путем метаболической (активной) абсорбции. Плазматические мембраны хорошо пропускают воду и мало проницаемы для ионов, которые поглощаются и против градиента концентрации. Так, концентрация К + в вакуоли бывает в 100 и более раз выше, чем в почве.

Неметаболическое поглощение -- обратимый процесс. Так, при переносе корневой системы растения из питательного раствора в воду в ней можно обнаружить часть элементов, диффундировавших в клеточные стенки и межклетники.

Метаболическое (активное) поглощение в отличие от неметаболического происходит медленно, поглощенные ионы быстро вовлекаются в обмен веществ и подвергаются превращениям:

NH 4 + , NO 3 - и SO 4 2- >аминокислоты,

РО 4 3- >АТФ, Са и Mg > фитин, Fe > порфирины.

Метаболическое поглощение является избирательным по отношению к различным ионам. Кроме того, процесс поглощения ионов требует затраты энергии и сопровождается повышением интенсивности дыхания.

Таким образом, поглощение веществ, элементов питания -- сложный процесс и осуществляется он при участии физико-химических и метаболических сил. Многочисленные исследования свидетельствуют о том, что единого механизма поглощения веществ, очевидно, не существует. Возможно существование ряда одновременно функционирующих механизмов поглощения веществ.

Поступление веществ в клетку, в цитоплазму происходит путем поверхностных адсорбционных процессов, диффузии, активного переноса и пиноцитоза. В общем виде адсорбция выражается концентрацией молекул растворенного вещества на поверхности раздела фаз, которые имеют поверхностную активность. Различают физическую, или неполярную, адсорбцию (действуют силы Ван дер Ваальса), полярную (адсорбция электролитов или ионов) и хемосорбцию (вследствие химических реакций).

Передвижение диспергированных веществ из одной части системы в другую называется диффузией (от лат. diffusio -- распространение, растекание). Растворенные в воде вещества рассеяны среди молекул растворителя, теряют силы сцепления друг с другом и находятся в непрерывном движении подобно движению частиц газа. Частицы растворенного вещества равномерно распределяются в доступном для них пространстве. Чем меньше частицы молекулы вещества, тем быстрее они распространяются в массе растворителя; крупные частицы веществ коллоидного характера передвигаются в десятки раз медленнее, чем молекулы кристаллоидов. Отсюда и основной закон: скорость диффузии обратно пропорциональна размеру частиц.

К диффузии способны газы, жидкости и твердые тела. Белки и полисахариды отличаются пониженной способностью к диффузии.

Активный перенос молекул осуществляется за счет энергии обмена веществ, которая поставляется в виде макроэргических связей (АТФ) при участии АТФ-азы, расщепляющей и освобождающей энергию.

Экспериментально разрабатывается теория клеточных переносчиков (П. Беннет-Кларк, А.Л. Курсанов, У. Стейн и др.). Суть этой теории заключается в том, что ионы, которые поступают из окружающей среды в полупроницаемую зону цитоплазмы, связываются специальными веществами -- клеточными переносчиками, выполняющими роль проводников ионов во внутренние слои протопласта. К веществам-переносчикам относятся б-кетоглютаровая кислота (НООС--СОСН 2 -- СН 2 --СООН) и другие кетокислоты из цикла Кребса, фосфолипид лецитин.

«Захваченное» клеточным переносчиком вещество попадает в более глубокие слои цитоплазмы и удерживается там веществами, которые акцептируют его.

Вещества-переносчики могут функционировать и в обратном направлении -- выносить органические и неорганические соединения из клетки наружу, что приводит, например, к выделению корневой системой органических соединений в окружающую среду.

Поглощение клеткой веществ из внешней среды может осуществляться также (по гипотезе Г. Холтера) пиноцитозом. Клетка в результате активного движения цитоплазматической поверхности как бы заглатывает капельки жидкости из раствора. Длительное время пиноцитоз считался присущим только животным клеткам. Однако обнаружены факты проникновения макромолекулярных веществ, в частности рибонуклеаз (РНК-азы --молекулярная масса 137683), в растительную клетку. Таким образом, возможен перенос в клетку больших молекул без их расщепления, путем пиноцитозных инвагинаций на поверхностных мембранах растительной клетки.

Электрически нейтральные молекулы (нуклеиновые кислоты, углеводы) не вызывают пиноцитоза. При добавлении к ним индуктора -- полярных молекул ионов металла -- появляются пиноцитозные инвагинации. Из органических веществ сильным индуктором пиноцитоза являются белки. Адсорбированные поверхностными мембранами цитоплазмы вещества втягиваются во внутренние слои, где и происходит их взаимодействие с веществом цитоплазмы.

Поглощение веществ, их транспортировка и превращения, движение протопласта связаны с затратой энергии, которая освобождается в процессе дыхания и аккумулируется в веществах, богатых макроэргическими связями. Кроме того, ионы кислоты Н + , HCО 3 - , образующиеся при дыхании, непрерывно поступают в плазмалемму вместо катионов и анионов, которые переходят в более глубокие слои цитоплазмы. Таким образом, процессы адсорбции, десорбции и дыхания Тесно связаны между собой.

Поглощение веществ клетками является относительно избирательным; только определенные вещества подвергаются десорбции со стороны цитоплазмы и выделяются из клетки в окружающую среду. Такая избирательность -- одно из важнейших свойств живой материи, которое возникло и закрепилось в процессе развития жизни.


Для того чтобы экзогенный субстрат мог быть использован клеткой, он должен пройти через ее пограничные слои. Клеточная стенка не служит существенной преградой для небольших молекул и ионов, но она задерживает макромолекулы, масса которых превышает 600 Да. Пограничным слоем, ответственным за транспорт питательных веществ внутрь клетки, является плазматическая мембрана.
Перенос питательных веществ через плазматическую мембрану, как правило, специфичен: поглощаться могут только те вещества, для которых имеется соответствующая транспортная система. За небольшими исключениями, транспорт зависит от наличия специфических пермеаз или транслоказ. Речь идет о мембранных белках, само название которых указывает на то, что они обладают свойствами ферментов, т.е. могут индуцироваться субстратом, специфичны в отношении субстрата и образуются только в таких условиях, в которых возможен синтез белков.
Что касается механизма транспорта веществ, то различают ряд различных процессов, два из которых способны обеспечивать только транспорт, но не накопление веществ в клетке; им можно противопоставить процессы активного транспорта, приводящие к аккумуляции веществ внутри клетки (рис. 7.18 и 7.19).
Простая диффузия. Неспецифическое проникновение веществ в клетку происходит путем пассивной диффузии. Для диффузии существенны величина молекул и степень их липофильности. Скорость перемещения путем диффузии невелика. Для сахаров такие процессы не были обнару-жены, и они мало вероятны. Путем простой диффузии в клетку прони-кают, видимо, яды, ингибиторы и другие чуждые клетке вещества.
Облегченная диффузия. При облегченной диффузии вещество, содер-жащееся в питательной среде, транспортируется в клетку «вниз» по своему градиенту концентрации. Этот процесс осуществляется благода-ря субстрат-специфической пермеазе и не требует затраты метаболиче-ской энергии. Скорость транспорта в широком диапазоне зависит от концентрации субстрата в среде (рис. 7.19). Питательное вещество не может накапливаться в клетке против градиента концентрации.
Рис. 7.18. Схема четырех механизмов транспорта веществ в клетку. Розовый кружок-транспортируемый субстрат; с - пермеаза (белок-переносчик); с с серым прямоугольником - энергизованный переносчик; ФЕП - фосфоенолпируват;
ГБ-термостабильный белок. Пояснения в тексте.
Активный транспорт. Активный транспорт и транслокация группы имеют с облегченной диффузией то общее, что эти процессы происходят с участием субстрат-специфических транспортных белков. Однако в отличие от облегченной диффузии такого рода транспорт требует затраты энергии. При использовании метаболической энергии вещество может накапливаться в клетке против концентрационного градиента. Основное различие между активным транспортом и транслокацией

Рис. 7.19. Кривые насыщения при поглощении двух субстратов интактными клетками бактерий [построены по данным о потреблении 02 (интенсивности дыхания)]. Активное и пассивное поглощение субстрата можно различить по форме кривой. Так как субстрат А поглощается путем активного транспорта и накапливается в клетке, дыхание даже при очень малых концентрациях субстрата достигает максимального уровня. Субстрат Б поглощается пассивно, и интенсивность дыхания достигает максимума лишь при относительно высокой концентрации такого субстрата (порядка 10-20 мМ/л).
Рис. 7.20. Различные виды активного транспорта, для ко-торых источником энергии служит протонный потенциал Др.
Мембрана Ґ\ V У1 н+ О ҐN
V / ІО СИМПОРТА и Н+
АНТИПОРТ Н* и Na+
СИМПОРТ В и Na"
УНИПОРТ К*
Наружная сторона
группы заключается в природе молекулы, поступающей внутрь клетки.
При активном транспорте в цитоплазму поступает та же молекула, которая была поглощена из питательной среды. При транслокации группы переносимая молекула в процессе транспорта видоизменяется, например фосфорилируется.
Все теории, объясняющие активный транспорт, включают представление о наличии в мембране специфических транспортных белков. Эти белки получили названия, указывающие на их функцию: пермеазы, транслоказы, белки-транслокаторы, переносчики. Транспортные процессы отличаются друг от друга главным образом тем, что служит для них источником энергии - протонный потенциал Ар (рис. 7.20), АТР или фосфоенолпируват (рис. 7.18).
Для переноса многих веществ, в том числе неорганических и органических ионов, а также сахаров, используется энергия протонного потенциала (см. стр. 243-244). Бактериальные клетки поддерживают про-тонный потенциал, непрерывно откачивая из клетки протоны и другие ионы (Na+). Для этого в мембране имеются специфические транспортные белки.
Каждый из этих белков имеет совершенно определенную функцию. Есть, например, белок, катализирующий одновременный и однонаправленный перенос одного протона и одной молекулы сахара (лактозы, мелибиозы, глюкозы). В таких случаях говорят о симпорте двух (или нескольких) веществ. Другие транспортные белки катализируют одновременный встречный перенос двух частиц, например одного протона и какого-то другого иона (Na+или аниона органической кислоты); в этих случаях говорят об антипорте. При переносе сахаров, сопряженном с транспортом ионов, вероятно, всегда используются ионы Н+ или Na + . У прокариот преобладает симпорт с ионами Н + , у эукариот - симпорт с Na+(рис. 7.20).
То, что у бактерий действительно существуют транспортные белки описанного типа, было подтверждено (а) путем очистки и последующего встраивания белка-переносчика в протопласты или в так называемые липосомы и (б) путем выделения мутантов, лишенных соответствующего белка и его специфической функции. Что касается транспорта с использованием энергии протонного потенциала, то это, вероятно, наиболее распространенный механизм активного поглощения субстратов.
Представление об участии специфических белков-переносчиков в транспорте ионов подтверждают данные о действии ряда антибиотиков и синтетических веществ. Речь идет о ионофорах. Это соединения с относительно небольшой моле-кулярной массой (500-2000), молекулы которых снаружи гидрофобны, а внутри гидрофильны. Обладая гидрофобными свойствами, они диффундируют в липидную мембрану. Из аитибиотиков-ионофоров наиболее известен валиномицин; он диффундирует внутрь мембраны и катализирует транспорт (унипорт) ионов К +, Cs + , Rb+или NH4. Поэтому присутствие таких катионов в суспензионной среде приводит к выравниванию заряда по обе стороны мембраны (как бы короткому замыканию) и тем самым к падению протонного потенциала. Другие ио- нофоры образуют каналы, по которым могут проходить ионы. Существуют также синтетические соединения, повышающие протонную проводимость мембран; наиболее известный переносчик протонов -карбонилцианид-и-трифторме- токсифенилгидразон. Он действует как «разобщитель»-нарушает сопряжение синтеза АТР с транспортом электронов, перенося в клетку протоны в обход АТР-синтазы. Изучение мембранного транспорта привело к важным результатам, которые согласуются с хемиосмотической теорией преобразования энергии и подкрепляют ее.
Наряду с транспортными системами, использующими протонный потенциал, существуют также системы, зависимые от АТР. Определенную роль здесь играют периплазматические связующие белки (рис. 2.28). Плазматическая мембрана животных клеток не транспортирует протоны и не создает протонного градиента. Мембранный потенциал, вероятно, поддерживается только ATP-зависимыми насосными механизмами, например натрий-калиевым насосом, а натриевый потенциал в свою очередь доставляет энергию для симпорта питательных веществ вместе с ионами Na + .
Транслокация группы. При транспорте этого типа молекула химически модифицируется; поглощается, например, сахар как таковой, а внутрь клетки он поступает в фосфорилированной форме. Фруктоза, глюкоза, маннитол и родственные вещества поглощаются с помощью фосфотрансферазной системы, зависимой от фосфоенолпирувата. Эта система состоит из неспецифического и специфического компонентов. Неспецифический компонент-это термостабильный белок, который при участии фермента I, находящегося в цитоплазме, фосфорилируется фос- фоенолпируватом. Второй компонент-находящийся в мембране инду- цибельный фермент И, специфичный для того или иного сахара; он катализирует перенос фосфата с термостабильного белка (ТБ) на сахар во время транспорта последнего через мембрану;
Фермент/
Фосфоенолпируват + НРг > НРг - Р + Пируват
Фермент И
НРг + Сахар > Сахар-Я+НРг
Фермент II, вероятно, выполняет функцию пермеазы и фосфотрансфе- разы одновременно (см. рис. 7.18).
В остальном поглощение веществ клетками - процесс очень сложный и пока еще плохо изученный. Многие метаболические эффекты торможения и явления конкуренции между одновременно доступными субстратами связаны, по-видимому, с особенностями регуляторных меха-низмов, которые проявляются уже в процессах транспорта веществ.
Выход веществ из клетки. О выходе метаболитов в окружающую среду известно существенно меньше, чем о механизмах поглощения веществ клеткой. По-видимому, и выделение их из клетки тоже происходит как при участии транспортных систем, так и путем неконтролируемой диффузии. Вещества выходят из клетки тогда, когда в результате перепроизводства они накапливаются в ней, достигая концентраций, превышающих нормальный уровень. Накопление может быть следствием неполного окисления, нарушения регуляции или процессов брожения.
Транспорт железа. Для транспорта этого макроэлемента микробная клетка обладает специальным механизмом. В анаэробных условиях же-лезо представлено двухвалентным ионом (Fe2 +), и его концентрация может достигать 10" 1 М/л, так что она не лимитирует рост микроорга-низмов. Однако в аэробных условиях при pH 7,0 железо представлено в виде гидроксидного комплекса Fe3 +, который почти нерастворим; концентрация ионов трехвалентного железа составляет всего лишь 10“ 18 М/л. Неудивительно поэтому, что микроорганизмы выделяют вещества, переводящие железо в растворимую форму. Эти вещества-так называемые сидерофоры-связывают ионы Fe3 + в комплекс и в таком виде транспортируют его; речь идет в основном о низкомолекулярных водорастворимых веществах (с мол. массой меньше 1500), связывающих железо координационными связями с высокой специфичностью и высоким сродством (константа устойчивости порядка ТО30). По своей химической природе это могут быть феноляты или гидроксаматы. К первым относится энтерохелин; он обладает шестью фенольными гидрокси- группами, и его выделяют некоторые энтеробактерии. Выйдя в окру-жающую среду, он связывает железо, и образовавшийся ферри-энтеро- хелин поглощается клеткой. В клетке железо освобождается в результате ферментативного гидролиза ферри-энтерохелина (рис. 7.21).
Многие грибы для той же цели образуют феррихромы; их относят к гидроксаматным сидерофорам. Это циклические гексапептиды, удер-живающие трехвалентное железо с помощью трех гидроксаматных групп. Они тоже выделяются из клетки в виде не содержащих железо соединений, связывают в питательной среде железо и в виде феррихро- мов снова поглощаются. В клетке железо восстанавливается до Fe2 +, к которому феррихромы имеют лишь незначительное сродство и поэтому освобождают его. Сходную функцию выполняют ферриоксамины (у актиномицетов), микобактины (у микобактерий) и экзохелины (тоже у микобактерий).

Рис. 7.21. Примеры механизмов переноса железа в клетки микроорганизмов с участием сидерофоров. Вверху-система транспорта с помощью энтерохелина, свойственная многим бактериям; внизу - феррихромная система, имеющаяся у многих грибов.
Микроорганизмы обычно выделяют сидерофоры в питательную среду только тогда, когда железо лимитирует рост. Выделение сидерофоров - следствие дерепрессии их синтеза. В присутствии растворенного, комплексно связанного железа сидерофоры синтезируются лишь в малых количествах и удерживаются в клеточной стенке. В этих условиях они служат только для транспорта железа в клетку.
В связи с этим интересно то, что среди естественных защитных приспособлений высших организмов мы находим «очистку» внутренней среды от железа. Существуют специальные белки, которые так прочно связывают имеющееся железо, что оно становится недоступным для микроорганизмов. Так, например, в белке куриного яйца содержится ко- нальбумин, в молоке, слезной жидкости и слюне - лактотрансферрин, а в сыворотке крови - серотрансферрин. При посеве бактерий на куриный белок они растут только в том случае, если одновременно с инокуляцией вводят ионы железа (в виде цитрата). Таким образом, железо играет важную роль в антагонистических отношениях между высшими организмами и бактериями. Борьбу выигрывает тот партнер, который вырабатывает вещество, прочнее связывающее железо.







2024 © winplast.ru.