Когда появились счетные машины? Рецензияпредметом исследования учащейся является теория чисел Вычислительная машина Ч.Беббиджа


История развития вычислительной техники

Развитие вычислительной техники можно разбить на следующие периоды:

Ø Ручной (VI век до н.э. - XVII век н.э.)

Ø Механический (XVII век - середина XX века)

Ø Электронный (середина XX века - настоящее время)

Хотя Прометей в трагедии Эсхила утверждает: «Подумайте, что смертным сделал я: число им изобрел и буквы научил соединять», понятие числа возникло задолго до появления письменности. Люди учились считать в течение многих веков, передавая и обогащая из поколения в поколение свой опыт.

Счет, или шире - вычисления, может быть осуществлен в различных формах: существует устный, письменный и инструментальный счет . Средства инструментального счета в разные времена имели различные возможности и назывались по-разному.

Ручной этап (VI век до н.э. - XVII век н.э.)

Возникновение счета в древности - «Это было началом начал...»

Предположительный возраст последней генерации человечества - 3-4 миллиона лет. Именно столько лет назад человек встал на ноги и взял в руки изготовленный им самим инструмент. Однако, способность считать (то есть способность разбивать понятия «больше» и «меньше» на конкретное количество единиц) сформировалась у человека значительно позднее, а именно 40-50 тысяч лет назад (поздний палеолит). Этот этап соответствует появлению современного человека (кроманьонца). Таким образом, одной из основных (если не главной) характеристикой, отличающей кроманьонца от более древней ступени человека, является наличие у него счётных способностей.

Нетрудно догадаться, что первым счетным устройством человека были его пальцы.

Пальцы оказались прекрасной вычислительной машиной. С их помощью можно было считать до 5, а если взять две руки, то и до 10. А в странах, где люди ходили босиком, по пальцам легко было считать до 20. Тогда этого практически хватало для большинства потребностей людей.

Пальцы оказались настолько тесно связанными со счетом, что на древнегреческом языке понятие "считать" выражалось словом "упятерить". Да и в русском языке слово "пять" напоминает "пясть" - часть кисти руки (слово "пясть" сейчас упоминают редко, но производное от него - "запястье" - часто используют и сейчас). Кисть руки, пясть, - синоним и фактически основа числительного «ПЯТЬ» у многих народов. Например, малайское «ЛИМА» означает одновременно и « рука» и «пять».

Однако известны народы, у которых единицами счёта были не пальцы, а их суставы.

Научившись считать по пальцам до десяти, люди сделали следующий шаг вперед и стали считать десятками. И если одни папуасские племена умели считать лишь до шести, то другие доходили в счете до нескольких десятков. Только для этого приходилось приглашать сразу много счетчиков.

Во многих языках слова "два" и "десять" созвучны. Может быть, это объясняется тем, что когда-то слово "десять" означало "две руки". И сейчас есть племена, которые говорят "две руки" вместо "десять" и "руки и ноги" вместо "двадцать". А в Англии первые десять чисел называют общим именем - "пальцы". Значит, и англичане когда-то считали по пальцам.

Пальцевой счет сохранился кое-где и поныне, например, историк математики Л.Карпинский в книге «История арифметики» сообщает, что на крупнейшей мировой хлебной бирже в Чикаго предложения и запросы, как и цены объявляются маклерами на пальцах без единого слова.

Затем появился счет с перекладыванием камней, счет с помощью чёток… Это был существенный прорыв в счетных способностях человека - начало абстрагирования цифры.

Зрители поднимают руки и выкрикивают только что придуманные числа. Или пишут их на доске, на табличках. В это время на арене стоит артист, который мгновенно складывает их, вычитает, умножает - делает все, что бы ни захотела публика.

Такие вот живые «калькуляторы» тоже весьма популярны в цирке. Они вызывают восхищение не только способностью произвести в уме сложные вычисления, но и скоростью. Только что на доске белел столбик из трех- и четырехзначных чисел, а уже через несколько секунд человеческий счетчик выдал результат.

Но что же стоит за поразительными способностями?

Упорный труд с самого детства. Как правило, способность быстро и легко считать в уме обнаруживается еще в раннем возрасте. Так было в случае с Вовочкой Зубрицким - семилетним мальчиком, который выступал в в Петербурге. После этого артист начинает ее развивать. Вначале он складывает простые числа, которые видит перед глазами на листке бумаги. Как только он это осваивает в совершенстве, числа становятся больше, столбик увеличивается, ему требуется быстро произвести несколько действий: сложить, умножить, извлечь корень.


Владимир Зубрицкий

Значения были большими, но времени на их подсчет давалось все меньше. Так цирковые «математики» учились, вскользь посмотрев на числа, быстро их просчитать в уме, запомнить количество, цвет и расположение нужных предметов. Даже если на решение задачи ему давалось всего несколько секунд, «феноменальная» зрительная память позволяла ему видеть эти цифры в уме. А значит, исписанные доска или лист бумаги ему уже были не нужны.

Известными счетоводами, перед которыми преклонялись даже цифры, были всемирно невероятные Роман Арраго, Хейфиц, Яков Острин с женой и ассистенткой Маргаритой Ждановой. Одно можно сказать точно: все они обладали колоссальной зрительной памятью. Но без многолетних тренировок образцами для подражания они бы не стали.

Созданный ими компьютер работал в тысячу раз быстрее, чем «Марк-1». Но обнаружилось, что большую часть времени этот компьютер простаивал, ведь для задания метода расчётов (программы) в этом компьютере приходилось в течение нескольких часов или даже нескольких дней подсоединять нужным образом провода. А сам расчет после этого мог занять всего лишь несколько минут или даже секунд.

Чтобы упростить и ускорить процесс задания программ, Мокли и Эккерт стали конструировать новый компьютер, который мог бы хранить программу в своей памяти. В 1945 г. к работе был привлечен знаменитый математик Джон фон Нейман , который подготовил доклад об этом компьютере. Доклад был разослан многим ученым и стал широко известен, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. И до сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 г. Джон фон Нейман. Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г. английским исследователем Морисом Уилксом .

Разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer) начата примерно в 1947 г. Эккертом и Мокли, основавшими в декабре того же года фирму ECKERT-MAUCHLI. Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 создана на базе ЭВМ ENIAC и EDVAC . Работала она с тактовой частотой 2.25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство с ёмкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

Вскоре после ввода в эксплуатацию машины UNIVAC-1 ее разработчики выдвинули идею автоматического программирования. Она сводилась к тому, чтобы машина сама могла подготавливать такую последовательность команд, которая нужна для решения данной задачи.

Сильным сдерживающим фактором в работе конструкторов ЭВМ начала 1950-х годов было отсутствие быстродействующей памяти. По словам одного из пионеров вычислительной техники Д. Эккерта, «архитектура машины определяется памятью». Исследователи сосредоточили свои усилия на запоминающих свойствах ферритовых колец, нанизанных на проволочные матрицы.

В 1951 г. Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации. В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба 32 х 32 х 17 с сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

Вскоре в разработку электронных компьютеров включается фирма IBM . В 1952 г. она выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 германиевых диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в ней использовались индексные регистры и данные представлялись в форме с плавающей запятой.

IBM 704
После ЭВМ IBM 704 была выпущена машина IBM 709, которая, в архитектурном плане, приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода-вывода.

В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти - дисковые запоминающие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12 000 об./мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.

Вслед за первым серийным компьютером UNIVAC-1 фирма Remington-Rand в 1952 г. выпустила ЭВМ UNIVAC-1103, которая работала в 50 раз быстрее. Позже в компьютере UNIVAC-1103 впервые были применены программные прерывания.

Сотрудники фирмы Rernington-Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (пррвый интерпретатор, созданный в 1949 г. Джоном Мокли). Кроме того, необходимо отметить офицера ВМФ США и руководителя группы программистов, в то время капитана (в дальнейшем единственная в ВМФ женщина-адмирал) Грейс Хоппер , которая разработала первую программу-компилятор. Кстати, термин «компилятор» впервые ввела Г. Хоппер в 1951 г. Эта компилирующая программа производила трансляцию на машинный язык всей программы, записанной в удобной для обработки алгебраической форме. Г. Хоппер принадлежит также авторство термина «баг» в применении к компьютерам. Как-то через открытое окно в лабораторию залетел жук (по-английски - bug), который, сев на контакты, замкнул их, чем вызвал серьезную неисправность в работе машины. Обгоревший жук был подклеен в административный журнал, где фиксировались различные неисправности. Так был задокументирован первый баг в компьютерах.

Фирма IBM сделала первые шаги в области автоматизации программирования, создав в 1953 г. для машины IBM 701 «Систему быстрого кодирования». В СССР А. А. Ляпунов предложил один из первых языков программирования. В 1957 г. группа под руководством Д. Бэкуса завершила работу над ставшим впоследствии популярным первым языком программирования высокого уровня, получившим название ФОРТРАН . Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

Алексей Андреевич Ляпунов
В Великобритании в июле 1951 г. на конференции в Манчестерском университете М. Уилкс представил доклад «Наилучший метод конструирования автоматической машины», который стал пионерской работой по основам микропрограммирования. Предложенный им метод проектирования устройств управления нашел широкое применение.

Свою идею микропрограммирования М. Уилкс реализовал в 1957 г. при создании машины EDSAC-2. М. Уилкс совместно с Д. Уиллером и С. Гиллом в 1951 г. написали первый учебник по программированию «Составление программ для электронных счетных машин».

В 1956 г. фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН было устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.

Появление персональных компьютеров

Вначале микропроцессоры использовались в различных специализированных устройствах, например в калькуляторах . Но в 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера, т. е. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя. Вначале 1975 г. появился первый коммерчески распространяемый персональный компьютер «Альтаир-8800 » на основе микропроцессора Intel-8080 . Этот компьютер продавался по цене около 500 долл. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т. д. Вскоре эти устройства стали выпускаться другими фирмами. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic , что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это также способствовало росту популярности персональных компьютеров.

Успех «Альтаир-8800» заставил многие фирмы также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы практического значения. Появились и коммерчески распространяемые программы, например программа для редактирования текстов WordStar и табличный процессор VisiCalc (1978 г. и 1979 г. соответственно). Эти и многие другие программы сделали покупку персональных компьютеров весьма выгодной для бизнеса: с их помощью стало возможно выполнять бухгалтерские расчеты, составлять документы и т. д. Использование же больших компьютеров для этих целей было слишком дорого.

В конце 1970-х годов распространение персональных компьютеров даже привело к некоторому снижению спроса на большие компьютеры и мини-компьютеры (мини-ЭВМ). Это стало предметом серьезного беспокойства фирмы IBM - ведущей компании по производству больших компьютеров, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров. Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание персонального компьютера всего лишь как мелкий эксперимент - что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер «с нуля», а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.

В качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel-8088 . Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 мегабайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 килобайтами.

В августе 1981 г. новый компьютер под названием IBM PC был официально представлен публике, и вскоре после этого он приобрел большую популярность у пользователей. Через пару лет компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров.

IBM PC
Секрет популярности IBM PC в том, что фирма IBM не сделала свой компьютер единым неразъёмным устройством и не стала защищать его конструкцию патентами. Наоборот, она собрала компьютер из независимо изготовленных частей и не стала держать спецификации этих частей и способы их соединения в секрете. Напротив, принципы конструкции IBM PC были доступны всем желающим. Этот подход, называемый принципом открытой архитектуры, обеспечил потрясающий успех компьютеру IBM PC, хотя и лишил фирму IBM возможности единолично пользоваться плодами этого успеха. Вот как открытость архитектуры IBM PC повлияла на развитие персональных компьютеров.

Перспективность и популярность IBM PC сделала весьма привлекательным производство различных комплектующих и дополнительных устройств для IBM PC. Конкуренция между производителями привела к удешевлению комплектующих и устройств. Очень скоро многие фирмы перестали довольствоваться ролью производителей комплектующих для IBM PC и начали сами собирать компьютеры, совместимые с IBM PC. Поскольку этим фирмам не требовалось нести огромные издержки фирмы IBM на исследования и поддержание структуры громадной фирмы, они смогли продавать свои компьютеры значительно дешевле (иногда в 2-3 раза) аналогичных компьютеров фирмы IBM.

Совместимые с IBM PC компьютеры вначале презрительно называли «клонами», но эта кличка не прижилась, так как многие фирмы-производители IBM PC-совместимых компьютеров стали реализовывать технические достижения быстрее, чем сама IBM. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами сотен различных производителей.

Персональные компьютеры будущего

Основой компьютеров будущего станут не кремниевые транзисторы , где передача информации осуществляется электронами, а оптические системы. Носителем информации станут фотоны, так как они легче и быстрее электронов. В результате компьютер станет более дешевым и более компактным. Но самое главное, что оптоэлектронное вычисление гораздо быстрее, чем то, что применяется сегодня, поэтому компьютер будет намного производительнее.

ПК будет мал по размерам и иметь мощь современных суперкомпьютеров . ПК станет хранилищем информации, охватывающей все аспекты нашей повседневной жизни, он не будет привязан к электрическим сетям. Этот ПК будет защищен от воров благодаря биометрическому сканеру , который будет узнавать своего владельца по отпечатку пальца.

Основным способом общения с компьютером будет голосовой. Настольный компьютер превратится в «моноблок», вернее, в гигантский компьютерный экран - интерактивный фотонный дисплей. Клавиатура не понадобится, так как все действия можно будет совершать прикосновением пальца. Но для тех, кто предпочитает клавиатуру, в любой момент на экране может быть создана виртуальная клавиатура и удалена тогда, когда в ней не будет нужды.

Компьютер станет операционной системой дома, и дом начнет реагировать на потребности хозяина, будет знать его предпочтения (приготовить кофе в 7 часов, запустить любимую музыку, записать нужную телепередачу, отрегулировать температуру и влажность и т. д.)

Размер экрана не будет играть никакой роли в компьютерах будущего. Он может быль большим, как ваш рабочий стол, или маленьким. Большие варианты компьютерных экранов будут основаны на жидких кристаллах, возбуждаемых фотонным способом, которые будут иметь гораздо более низкое энергопотребление, чем сегодняшние LCD-мониторы. Цвета будут яркими, а изображения - точными (возможны плазменные дисплеи). Фактически сегодняшняя концепция «разрешающей способности» будет в значительно степени атрофирована.







2024 © winplast.ru.