Источники загрязнения тяжелыми металлами. Тяжелые металлы – наиболее опасные элементы, способные загрязнять почву Загрязнение почвы тяжелыми металлами причины способы последствия


Одним из сильнейших по действию и наиболее распространенным химическим загрязнением является загрязнение тяжелыми металлами.

Тяжёлые металлы - это элементы периодической системы химических элементов, с молекулярной массой свыше 50 атомных единиц. Эта группа элементов активно участвует в биологических процессах, входя в состав многих ферментов. Группа «тяжелых металлов» во многом совпадает с группой микроэлементов. С другой стороны, тяжёлые металлы и их соединения оказывают вредное воздействие на организм. К ним относятся: свинец, цинк, кадмий, ртуть, молибден, хром, марганец, никель, олово, кобальт, титан, медь, ванадий.

Тяжелые металлы, попадая в организм, остаются там навсегда, вывести их можно только с помощью белков молока.Достигая определенной концентрации в организме, они начинают свое губительное воздействие - вызывают отравления, мутации. Кроме того, что сами они отравляют организм человека, они еще и чисто механически засоряют его - ионы тяжелых металлов оседают на стенках тончайших систем организма и засоряют почечные каналы, каналы печени, таким образом, снижая фильтрационную способность этих органов. Соответственно, это приводит к накоплению токсинов и продуктов жизнедеятельности клеток нашего организма, т.е. самоотравление организма, т.к. именно печень отвечает за переработку ядовитых веществ, попадающих в наш организм, и продуктов жизнедеятельности организма, а почки - за их выведение из организма.

Источники поступления тяжелых металлов делятся на природные (выветривание горных пород и минералов, эрозийные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, движение транспорта, деятельность сельского хозяйства).

Часть техногенных выбросов, поступающих в природную среду в виде тонких аэрозолей, переносится на значительные расстояния и вызывает глобальное загрязнение.

Другая часть поступает в бессточные водоемы, где тяжелые металлы накапливаются и становятся источником вторичного загрязнения, т.е. образования опасных загрязнений в ходе физико-химических процессов, идущих непосредственно в среде (например, образование из нетоксичных).

В водоёмы тяжелые металлы поступают обычно со стоками горнодобывающих и металлургических предприятий, а также предприятий химической и легкой промышленности, где их соединения используют в различных технологических процессах. Например, много солей хрома сбрасывают предприятия по дублению кожи, хром и никель используются для гальванического покрытия поверхностей металлических изделий. Соединения меди, цинка, кобальта, титана используются в качестве красителей и т.д.

К возможным источникам загрязнения биосферы тяжелыми металлами относят: предприятия черной и цветной металлургии (аэрозольные выбросы, машиностроения (гальванические ванны меднения, никелирования, хромирования), заводы по переработке аккумуляторных батарей, автомобильный транспорт.

Кроме антропогенных источников загрязнения среды обитания тяжелыми металлами существуют и другие, естественные, например вулканические извержения. Все эти источники загрязнения вызывают в биосфере или ее составляющих (воздухе, воде, почвах, живых организмах) увеличение содержания металлов-загрязнителей по сравнению с естественным, так называемым фоновым уровнем.

Период полуудаления или удаления половины от начальной концентрации составляет продолжительное время: для цинка - от 70 до 510 лет, для кадмия - от 13 до 110 лет, для меди - от 310 до 1500 лет и для свинца - от 740 до 5900 лет.

Тяжелые металлы обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям. Многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах.

В качестве токсикантов в водоемах обычно встречаются: ртуть, свинец, кадмий, олово, цинк, марганец, никель, хотя известна высокая токсичность и других тяжелых металлов - кобальта, серебра, золота, урана и других. Вообще, высокая токсичность для живых существ - это характерное свойство соединений и ионов тяжелых металлов.

В ряду тяжелых металлов одни крайне необходимы для жизнеобеспечения человека и других живых организмов и относятся к так называемым биогенным элементам. Другие вызывают противоположный эффект и, попадая в живой организм, приводят к его отравлению или гибели. Эти металлы относят к классу ксенобиотиков, то есть чуждых живому. Среди металлов-токсикантов выделена приоритетная группа: кадмий, медь, мышьяк, никель, ртуть, свинец, цинк и хром как наиболее опасные для здоровья человека и животных. Из них ртуть, свинец и кадмий наиболее токсичны.

Токсическое действие тяжёлых металлов на организм усиливается тем, что многие тяжелые металлы проявляют выраженные комплексообразующие свойства. Так, в водных средах ионы этих металлов гидратированы и способны образовывать различные гидроксокомплексы, состав которых зависит от кислотности раствора. Если в растворе присутствуют какие-либо анионы или молекулы органических соединений, то ионы тяжёлых металлов образуют разнообразные комплексы различного строения и устойчивости.

К примеру ртуть, легко образуют соединения и комплексы с органическими веществами в растворах и в организме, хорошо усваиваются организмами из воды и передаются по пищевой цепи. По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Ртуть реагирует с SH-группами белковых молекул, среди которых – важнейшие для организма ферменты. Ртуть также реагирует с белковыми группами - СООН и NH 2 с образованием прочных комплексов – металлопротеидов. А циркулирующие в крови ионы ртути, попавшие туда из легких, также образуют соединения с белковыми молекулами. Нарушение нормальной работы белков-ферментов приводит к глубоким нарушениям в организме, и прежде всего – в центральной нервной системе, а также в почках.

Особенно опасны выбросы в воду ртути, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимых в воде токсичных органических соединений ртути, которые намного более токсичны, чем неорганические. Обитающие там микроорганизмы превращают их в диметилртуть (CH 3) 2 Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион HgCH 3 + . Оба вещества поглощаются водными организмами и попадают в пищевую цепочку; сначала они накапливаются в растениях и мельчайших организмах, затем – в рыбах. Метилированная ртуть очень медленно выводится из организма – месяцами у людей и годами у рыб.

Тяжёлые металлы проникают в живой организм, в основном, через воду (исключением является ртуть, пары которой очень опасны). Попав в организм, тяжёлые металлы чаще всего не подвергаются каким-либо существенным превращениям, как это происходит с органическими токсикантами, и, включившись в биохимический цикл, они крайне медленно покидают его.

Важнейшим показателем качества среды обитания является степень чистоты поверхностных вод. Металл-токсикант, попав в водоем или реку, распределяется между компонентами этой водной экосистемы. Однако не всякое количество металла вызывает расстройство экосистемы.

При оценке способности экосистемы сопротивляться внешнему токсическому воздействию принято говорить о буферной емкости экосистемы. Так, под буферной емкостью пресноводных экосистем по отношению к тяжелым металлам понимают такое количество металла-токсиканта, поступление которого существенно не нарушает естественного характера функционирования всей изучаемой экосистемы.

При этом сам металл-токсикант распределяется на следующие составляющие:

Металл в растворенной форме;

Сорбированный и аккумулированный фитопланктоном, то есть растительными микроорганизмами;

Удерживаемый донными отложениями в результате седиментации взвешенных органических и минеральных частиц из водной среды;

Адсорбированный на поверхности донных отложений непосредственно из водной среды в растворимой форме;

Находящийся в адсорбированной форме на частицах взвеси.

Кроме аккумулирования металлов за счет адсорбции и последующей седиментации в поверхностных водах происходят другие процессы, отражающие устойчивость экосистем к токсическому воздействию такого рода загрязнителей. Наиболее важный из них состоит в связывании ионов металлов в водной среде растворенными органическими веществами. При этом общая концентрация токсиканта в воде не меняется. Тем не менее, принято считать, что наибольшей токсичностью обладают гидратированные ионы металлов, а связанные в комплексы опасны в меньшей мере либо даже почти безвредны. Специальные исследования показали, что между общей концентрацией металла-токсиканта в природных поверхностных водах и их токсичностью нет однозначной зависимости.

В природных поверхностных водах содержится множество органических веществ, 80% которых составляют высокоокисленные полимеры типа гумусовых веществ, проникающих в воду из почв. Остальная часть органических веществ, растворимых в воде, представляет собой продукты жизнедеятельности организмов (полипептиды, полисахариды, жирные и аминокислоты) или же подобные по химическим свойствам примеси антропогенного происхождения. Все они, конечно, претерпевают различные превращения в водной среде. Но все они в то же время являются своего рода комплексообразующими реагентами, связывающими ионы металлов в комплексы и уменьшающими тем самым токсичность вод.

Различные поверхностные воды по-разному связывают ионы тяжёлых металлов, проявляя при этом различную буферную емкость. Воды южных озер, рек, водоемов, имеющих большой набор природных компонентов (гумусовые вещества, гуминовые кислоты и фульвокислоты) и их высокую концентрацию, способны к более эффективной природной детоксикации по сравнению с водами водоемов Севера и умеренной полосы. Поэтому токсичность вод, в которых оказались загрязнители, зависит и от климатических условий природной зоны. Следует отметить, что буферная емкость поверхностных вод по отношению к металлам-токсикантам определяется не только наличием растворенного органического вещества и взвесей, но и аккумулирующей способностью гидробионтов, а также кинетикой поглощения ионов металлов всеми компонентами экосистемы, включая комплексообразование с растворенными органическими веществами. Все это говорит о сложности процессов, протекающих в поверхностных водах при попадании в них металлов-загрязнителей.

Что касается свинца, то половина от общего количества этого токсиканта поступает в окружающую среду в результате сжигания этилированного бензина. В водных системах свинец в основном связан адсорбционно со взвешенными частицами или находится в виде растворимых комплексов с гуминовыми кислотами. При биометилировании, как и в случае со ртутью, свинец в итоге образует тетраметилсвинец. В незагрязненных поверхностных водах суши содержание свинца обычно не превышает 3 мкг/л. В реках промышленных регионов отмечается более высокое содержание свинца. Снег способен в значительной степени аккумулировать этот токсикант: в окрестностях крупных городов его содержание может достигать почти 1 млн мкг/л, а на некотором удалении от них ~1-100 мкг/л.

Водные растения хорошо аккумулируют свинец, но по-разному. Иногда фитопланктон удерживает его с коэффициентом концентрирования до 105, как и ртуть. В рыбе свинец накапливается незначительно, поэтому для человека в этом звене трофической цепи он относительно мало опасен. Метилированные соединения в рыбе в обычных условиях содержания водоемов обнаруживаются относительно редко. В регионах с промышленными выбросами накопление тетраметилсвинца в тканях рыб протекает эффективно и быстро - острое и хроническое воздействие свинца наступает при уровне загрязненности 0,1-0,5 мкг/л. В организме человека свинец может накапливаться в скелете, замещая кальций.

Другой важный загрязнитель водоёмов – кадмий. По химическим свойствам этот металл подобен цинку. Он может замещать последний в активных центрах металлсодержащих ферментов, приводя к резкому нарушению в функционировании ферментативных процессов.

Кадмий обычно проявляет меньшую токсичность по отношению к растениям в сравнении с метилртутью и сопоставим по токсичности со свинцом. При содержании кадмия ~ 0,2-1 мг/л замедляются фотосинтез и рост растений. Интересен следующий зафиксированный эффект: токсичность кадмия заметно снижается в присутствии некоторых количеств цинка, что еще раз подтверждает предположение о возможности конкуренции ионов этих металлов в организме за участие в ферментативном процессе.

Порог острой токсичности кадмия варьирует в пределах от 0,09 до 105 мкг/л для пресноводных рыб. Увеличение жесткости воды повышает степень защиты организма от отравления кадмием. Известны случаи сильного отравления людей кадмием, попавшим в организм по трофическим цепям (болезнь итай-итай). Из организма кадмий выводится в течение длительного периода (около 30 лет).

В водных системах кадмий связывается с растворенными органическими веществами, особенно если в их структуре присутствует сульфгидрильные группы SH. Кадмий образует также комплексы с аминокислотами, полисахаридами, гуминовыми кислотами. Как и в случае со ртутью и другими тяжёлыми металлами адсорбция ионов кадмия донными осадками сильно зависит от кислотности среды. В нейтральных водных средах свободный ион кадмия практически нацело сорбируется частицами донных отложений.

Для контроля качества поверхностных вод созданы различные гидробиологические службы наблюдений. Они следят за состоянием загрязнения водных экосистем под влиянием антропогенного воздействия.

КОНТРОЛЬНЫЕ ВОПРОСЫ К МОДУЛЮ 3

1. Чем определяется роль Мирового океана как ключевого звена в биосфере?

2. Охарактеризуйте состав гидросферы.

3. Как взаимодействует гидросфера с другими оболочками Земли?

4. Каково значение водных растворов для живых организмов?

5. Перечислите наиболее распространенные химические элементы в составе гидросферы.

6. В каких единицах измеряется соленость морской воды?

7. На каких принципах построена классификация природных вод?

8. Химический состав природных вод.

9. Поверхностно-активные вещества в водоемах.

10. Изотопный состав воды.

11. Влияние кислотных дождей на объекты гидросферы.

12. Буферная емкость естественных водоемов.

13. Бионакопление тяжелых металлов, пестицидов, радионуклидов в организмах, обитающих в водной среде.

14. Горизонтальные и вертикальные перемещения водных масс.

15. Апвеллинг.

16. Круговорот природных вод.

17. Процессы окисления и восстановления в природных водоемах.

18. Нефтяные загрязнения природных вод.

19. Антропогенные загрязнения гидросферы.

20. Факты, характеризующие ухудшение состояния водного бассейна?

21. Приведите характеристики показателей качества воды.

22. Окисляемость грунтовых вод.

23. Основные физические свойства воды.

24. Аномалии физических свойств воды.

25. Поясните схему глобального круговорота воды?

26. Перечислите основные виды загрязнённых сточных вод.

27. Принципы оценки качества воды?

ЭКОЛОГИЧЕСКАЯ ОЦЕНКА ЗАГРЯЗНЕНИЯ ПОЧВ ТЯЖЁЛЫМИ МЕТАЛЛАМИ

УДК 631.45.

Снетилова Валерия Сергеевна,
Вологодский государственный университет

магистрант Кафедры геоэкологии и инженерной геологии, факультет экологии

ENVIRONMENTAL ASSESSMENT OF SOIL POLLUTION WITH HEAVY METALS

Shatilova Valeria,

undergraduate of 2 years of training

Department of Geoecology and engineering Geology, faculty of ecology

Vologda state University

АННОТАЦИЯ:

Почва является важнейшим элементом экосистемы, включает в себя разные загрязняющие компоненты химического происхождения, такие как тяжелые металлы, связывающиеся с органической и минеральной средой почвы, повышающие показатели её токсичности. Превышение содержания тяжёлых металлов в почвенном покрове негативно сказывается на выращиваемой сельскохозяйственной продукции, фитосанитарных показателях растений, которое, в свою очередь, является важным маркером экологического качества продукции растениеводства агропромышленного комплекса страны. Исследованиями были охвачены пахотные дерново-подзолистые почвы Вологодской области, подвергающиеся интенсивному антропогенному воздействию.

ABSTRACT:

The soil is the most important element of the ecosystem, includes the different polluting components of chemical origin, such as heavy metals, bind with organic and mineral soil pH, increasing indicators of toxicity. High concentrations of heavy metals in soil negatively affects grown agricultural products, phytosanitary indica plants, which, in turn, is an important marker of ecological quality of crop products agro-industrial complex of the country. The researches covered arable sod-podzolic soil of the Vologda area exposed to intensive anthropogenic impact.

Ключевые слова: почва, тяжёлые металлы, токсичность, фитосанитарное состояние растений, экологическое качество растительной продукции.

Key words: soil, heavy metals, toxicity, phytosanitary condition of plants, ecological quality of vegetable production.

Борьба с загрязнением различных природных сред является важнейшей задачей экологической безопасности России .

Существует множество исследований в направлении изучения характера загрязнения экосистем , охватывающих различные отдельные аспекты загрязнения водной, почвенной, воздушной сред .

Почва является важнейшим элементом биогеоценоза , включает в себя разные загрязняющие компоненты химического происхождения, такие как тяжелые металлы, связывающиеся с органической и минеральной средой почвы, повышающие показатели её токсичности . Превышение содержания тяжёлых металлов в почвенном покрове негативно сказывается на выращиваемой сельскохозяйственной продукции, фитосанитарных показателях растений , которое, в свою очередь, является важным маркером экологического качества продукции растениеводства агропромышленного комплекса страны .

Цель наших исследований — оценка загрязнения тяжёлыми металлами пахотных дерново-подзолистых почв Вологодской области.

Для достижения цели необходимо решить задачи :

1. Анализ типов почв и факторов почвообразования;

3.Анализ влияния тяжелых металлов на жизнедеятельность растительных организмов.

На территории Вологодской области сформировался достаточно разнообразный почвенный покров. Большая часть сельскохозяйственных угодий расположена на почвах дерново-подзолистого типа.

Исследованиями были охвачены пахотные дерново-подзолистые почвы Вологодской области, подвергающиеся интенсивному антропогенному воздействию. ПДК определены с помощью гигиенических нормативов .

В суглинистых почвах ПДК по меди превышено.

Медь — это составной элемент комплекса окислительных ферментов. Медь оказывает положительное влияние на процессы фотосинтеза, хлорофилла, процессы синтез в растительных организмах.

В суглинистых и супесчаных почвах ПДК превышено по содержанию цинка. В песчаных почвах ПДК не превышено.

Цинк принимает активное участие в окислительно-восстановительных реакциях, дыхательных процессах, превращении различных соединений, важен для фосфорного и углеводного обмена, синтеза нуклеиновых кислот и белков, крахмала, контролирует процесс плодоношения. При недостатке цинка уменьшается активность ферментов, проявляются различные болезни листовой пластинки.

В суглинистых почвах наблюдается превышение ПДК по содержанию марганца. В супесчаных и песчаных ПДК не превышено.

Марганец принимает участие в фотосинтетических и дыхательных процессах, является регулятором окислительно-восстановительных реакций растений. При азотном питании марганец выступает в качестве восстановителя, при аммиачном питании — служит сильным окислителем. Марганец располагается в основном в хлоропластах, ускоряет фиксацию азота, повышает аминокислотный ряд, форсирует брожение спиртов и аэробное окисление углеводов, приводит к активизации ферментов, катализирующих окислительно-восстановительные реакции.

В обследованных образцах почвы ПДК по кобальту не превышено.

Физиологическое значение кобальта для жизнедеятельности растений очень велико и разнообразно. Кобальт увеличивает урожаи культуры картофеля, а также содержание в нём соединений крахмала. Усиливает процесс биосинтез белков, повышает содержание аскорбиновых кислот, ускоряет процесс цветения культуры клевера и приводит к увеличению урожайности многих овощных агрокультур.

В обследованных образцах почвы ПДК по кадмию не превышено.

Кадмий является очень токсичным металлом. Кадмий активно поглощается растениями, но не нужен им для нормальной жизнедеятельности. Стагнация кадмия происходит в корневых системах, в меньшей степени в стебле и листьях. С помощью хлорофилла кадмий концентрируется в тканях растений. При повышении содержания кадмия в растениях происходит хлороз листовых пластинок, листья приобретают красно-бурую окраску по краям и прожилкам, кроме того, наблюдается торможение ростовых процессов и повреждение корней растений.

В суглинистых и супесчаных почвах превышение ПДК наблюдается по среднему содержанию свинца, в песчаных — ПДК не превышено.

Свинец в незначительных количествах (от 5 до 10 мг/кг) увеличивает содержание крахмала, ускоряет процесс прорастания всходов растений.

В суглинистых почвах превышение ПДК наблюдается по содержанию никеля. В супесчаных и песчаных ПДК не превышено.

Биологическое значение никеля на данный момент изучено недостаточно, однако он встречается в различных растительных организмах. Никель влияет на урожайность агрокультур.

В суглинистых почвах превышение ПДК наблюдается по среднему содержанию хрома. В супесчаных и песчаных ПДК не превышено.

Хром необходим растениям в небольших дозах, однако его физиологическое значение слабо изучено.

Во всех исследуемых почвах происходит превышение ПДК. Наибольшее превышение в дерново-подзолистых суглинистых почвах.

В почвах, где наблюдается превышение ПДК необходимо проведение фитосанитарных мероприятий, заключающихся в подсеве травостоев (в рамках севооборотов), аккумулирующих тяжёлые металлы из почвы.

СПИСОК ЛИТЕРАТУРЫ:

    Уханов В.П. , Хамитова С.М. , Авдеев Ю.М. Экологический мониторинг состояния особо охраняемых природных территорий//. 2016. № 10 (121). С. 66-71.

    Рувинова Л.Г. , Сверчкова А.Н. , Хамитова С.М. , Авдеев Ю.М. Биологический мониторинг загрязнения почвенной и водной среды в условиях урбанизации // Вестник Красноярского государственного аграрного университета . 2016. № 6 (117). С. 14-20.

    Ахмедов А.Э., Ахмедова О.И., Шаталов М.А. Формирование системы управления отходами в Российской Федерации // Проблемы рекультивации отходов быта, промышленного и сельскохозяйственного производства. IV международная научная экологическая конференция (с участием экологов Азербайджана, Армении, Беларуси, Германии, Грузии, Казахстана, Киргизии, Латвии, Ливана, Молдовы, Приднестровья, России, Словакии, Узбекистана и Украины). Краснодар, 2015. С. 718-721.

    Корчагов С.А., Авдеев Ю.М., Хамитова С.М., Глинина Ю.В., Енальский А.П. Экологическая и генети ческая оценка свойств деревьев ели различных экотипов в условиях Вологодской области //Вестник Красноярского государственного аграрного университета . 2016. № 5 (116) . С. 65-72

    Avdeev Y.M. The influence of the crown on the formation of the tree //
    Уральский научный вестник . 2016. Т. 11. № 2 . С. 129-130

    Avdeev Y.M. The environmental performance of wood in forest ecosystems // Уральский научный вестник . 2016. Т. 11. № 2 . С. 131-132

    Белый А.В., Заварин Д.А., Протопопова Е.В. Методология подготовки бакалавров землеустройства ВоГТУ в свете внедрения геодезических приборов нового поколения //В сборнике: Вузовская наука — региону Материалы Десятой Всероссийской научно-технической конференции в 2 томах. Ответственный редактор: Плеханов А.А.. Вологда, 2012. С. 190-192

    Тесаловский А.А. //Известия Санкт-Петербургского государственного аграрного университета . 2011. № 23 . С. 337-341

    Белый А.В., Крутов Г.Г., Протопопова Е.В. Оптимизация учебной подготовки бакалавров-землеустроителей и пути её достижения //В сборнике: Вузовская наука — региону Материалы XII Всероссийской научно-технической конференции. 2014. С. 368-370

    Тесаловский А.А. Методика кадастровой оценки земель, резервируемых в целях строительства водохранилищ комплексного назначения //
    Вестник МГСУ . 2010. № 2 . С. 31-36

    Шаталов М.А., Мычка С.Ю. Механизм управления бытовыми отходами в рамках системы экологически безопасных технологий утилизации // Экономика. Инновации. Управление качеством. 2015. № 3 (12). С. 181.

    Попов Ю.П., Белый А.В. Особенности разработки территориальной схемы обращения с отходами на основе региональной ГИС //Вузовская наука — региону материалы XIV Всероссийской научной конференции. 2016. С. 117-119

    Белый А.В., Попов Ю.П. К вопросу загрязнения окружающей среды при обращении с твердыми коммунальными отходами // NovaUm.Ru . 2017. № 5 . С. 186-188

    Белый А.В., Попов Ю.П. Результаты комплексного исследования загрязнения окружающей среды от свалок ТБО сельских поселений вологодской области //В сборнике: Вузовская наука — региону Материалы Десятой Всероссийской научно-технической конференции в 2 томах. Ответственный редактор: Плеханов А.А.. Вологда, 2012. С. 192-195

    Попов Ю.П., Белый А.В. Управление системой обращения с земельными участками, используемыми для захоронения твердых бытовых отходов в вологодской области на основе географической информационной системы //Экология промышленного производства . 2012. № 3 . С. 80-84

    Попов Ю.П., Белый А.В. Особенности управления выбором площадок строительства полигонов твердых бытовых отходов //В сборнике: Вузовская наука — региону Материалы XII Всероссийской научно-технической конференции. 2014. С. 245-247

    Асаул А.Н., Асаул М.А., Заварин Д.А. Особенности постановки на государственный кадастровый учет земельного участка // Таврический научный обозреватель . 2015. № 5-1 . С. 107-115

    Asaul A.N., Zavarin D.A., Ivanov S.N. Organizational mechanismsof stimulating innovative activity of regional investment constructionclusters // Вестник гражданских инженеров . 2015. № 5 (52) . С. 273-282

    Белый А.В., Попов Ю.П. К вопросу обоснования системы обращения с твердыми бытовыми отходами на базе муниципальной ГИС //
    В сборнике: Вузовская наука — региону материалы Седьмой Всероссийской научно-технической конференции в 2 томах. Вологда, 2009. С. 252-254

    Тесаловский А.А. Особенности кадастрового обеспечения разработки схемы размещения объектов переработки и хранения отходов при планировании развития территорий //Евразийский юридический журнал . 2017. № 1 (104) . С. 371-374

    Попов Ю.П., Белый А.В. Управление системой обращения с земельными участками, используемыми для захоронения твёрдых бытовых отходов в вологодской области на основе ГИС // Землеустройство, кадастр и мониторинг земель . 2012. № 9 (93) . С. 56-61

    Белый А.В., Попов Ю.П. О Возможности экологического обоснования территориальных строительных норм обращения с твёрдыми бытовыми отходами на региональном уровне // В сборнике: Вузовская наука — региону Материалы девятой всероссийской научно-технической конференции в 2 томах. Вологда, 2011. С. 203-206

    Хамитова С.М., Авдеев Ю.М., Селищева О.А. Исследования почвенной микрофлоры дендропарка имени Николая Клюева // В сборнике: 2015. С. 78

    Хамитова С.М., Авдеев Ю.М. Микробиологические исследования почв в зелёных городских насаждениях Вологодской области //Вестник Красноярского государственного аграрного университета . 2016. № 10 (121) . С. 29-35

    Рудаков В.О., Картабаева Б.Б., Хамитова С.М., Авдеев Ю.М. Микроорганизмы почвы дендропарка Николая Клюева // Биотика . 2015. Т. 7. № 6 . С. 172-175


    Исследование микрофлоры почв в лесных питомниках Вологодской области //Самарский научный вестник . 2016. № 3 (16) . С. 53-56

    Зайдельман Ф.Р., Плавинский В.А., Белый А.В. Влияние глубокого мелиоративного рыхления на физические свойства почв на тяжелых покровных породах и урожай // Вестник Московского университета. Серия 17: Почвоведение . 1986. № 2 . С. 10-16

    Хамитова С.М., Авдеев Ю.М., Снетилова В.С. Исследование патогенной ризосферной нематодфауны дендропарка имени Николая Клюева // В сборнике: Актуальные проблемы развития лесного комплекса материалы Международной научно-технической конференции. 2017. С. 49-52

    Хамитова С.М., Авдеев Ю.М., Конашенко Ю.И., Климовская А.Р., Селякова Н.С., Снетилова В.С. Исследования почвенной микрофлоры кедровой рощи Грязовца Вологодской области // В сборнике: Сборник материалов III Молодежного Экологического Форума 2015. С. 80

    Дурягина Н.В., Андреева Т.В., Хамитова С.М., Авдеев Ю.М. Организация и состояние фитосанитарного контроля в Вологодской области // В сборнике: Ростки науки Сборник научных трудов студентов, аспирантов и молодых ученых, посвященный 70-летию факультета агрономии и лесного хозяйства. 2013. С. 17-18

    Авдеев Ю.М. Энергетическая оценка агроэкосистем //NovaUm.Ru . 2017. № 6 . С. 47-51

    Шаталов М.А., Мычка С.Ю. Формирование системы глубокой переработки отходов пищевых производств АПК // Проблемы рекультивации отходов быта, промышленного и сельскохозяйственного производства. IV Международная научная экологическая конференция (с участием экологов Азербайджана, Армении, Беларуси, Германии, Грузии, Казахстана, Киргизии, Латвии, Ливана, Молдовы, Приднестровья, России, Словакии, Узбекистана и Украины). 2015. С. 402-404.

    Филиппова А.Б., Авдеев Ю.М. Формирование побегов и устойчивость многолетних трав в сеяных травостоях Крайнего Севера //Вестник Красноярского государственного аграрного университета . 2015. № 7 . С. 130-134

    Мычка С.Ю., Шаталов М.А. Формирование системы глубокой переработки отходов промышленно-производственных подсистем АПК // Агротехника и энергообеспечение. 2015. № 3 (7). С. 185-190.

    Авдеев Ю.М., Костин А.Е., Литонина А.С. Влияние растительных кормовых добавок на переваримость сухого вещества и расщепляемость протеина в зерне ячменя, хранившегося в герметичных условиях //
    Кормопроизводство . 2011. № 7 . С. 37-38

    Зорин Д.П., Старковский Б.Н., Авдеев Ю.М., Костин А.Е. Эффективность использования инсектицидов на семенных посадках кипрея узколистного //
    Кормопроизводство . 2012. № 1 . С. 28-29

    Баутин В.М., Шаталов М.А. Направления развития системы глубокой переработки отходов промышленно-производственных подсистем АПК // Экономика. Инновации. Управление качеством. 2015. № 3 (12). С. 72-73.

    Авдеев Ю.М., Костин А.Е. Растительные кормовые добавки: влияние на зерно в герметичных условиях // Кормопроизводство . 2011. № 8 . С. 33-34

    Гигиенические нормативы ГН 2.1.7.2511-09. Ориентировочно допустимые концентрации химических веществ в почве [Электронный ресурс]. – Утв. постановлением Главного государственного санитарного врача РФ от 18 мая 2009г. № 32 // Портал нормативных документов. – Режим доступа: hptt: // OpenGost.ru.

Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах .

Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан.

Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.

Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов .

Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).

В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10-12), концентрация Cd, V, Sb - в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag - в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).

Таблица 1. Основные техногенные источники тяжелых металлов

Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.

Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd .

Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).

Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда, при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10-40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .

Таблица 2. Зоны загрязнения почв вокруг точечных источников загрязнения

Расстояние от источника загрязнения в км

Превышение содержания ТМ по отношению к фоновому

Охранная зона предприятия

Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.

Загрязнение почв тяжелыми металлами имеет разные источники:

1. отходы металлообрабатывающей промышленности;

2. промышленные выбросы;

3. продукты сгорания топлива;

4. автомобильные выхлопы отработанных газов;

5. средства химизации сельского хозяйства.

Металлургические предприятия ежегодно выбрасывают на поверхность земли более 150 тыс. тонн меди, 120 тыс. тонн цинка, около 90 тыс. тонн свинца, 12 тыс. тонн никеля, 1,5 тыс. тонн молибдена, около 800 тонн кобальта и около 30 тонн ртути. На 1 грамм черновой меди отходы медеплавильной промышленности содержат 2,09 тонн пыли, в составе которой содержится до 15% меди, 60% окиси железа и по 4% мышьяка, ртути, цинка и свинца. Отходы машиностроительных и химических производств содержат до 1 г/кг свинца, до 3 г/кг меди, до 10 г/кг хрома и железа, до 100 г/кг фосфора и до 10 г/кг марганца и никеля. В Силезии вокруг цинковых заводов громоздятся отвалы с содержанием цинка от 2 до 12% и свинца от 0,5 до 3%, а в США эксплуатируют руды с содержанием цинка 1,8%.

С выхлопными газами на поверхность почв попадает более 250 тыс. тонн свинца в год; это главный загрязнитель почв свинцом. Тяжелые металлы попадают в почву вместе с удобрениями, в состав которых они входят как примесь.

Хотя тяжелые металлы иногда обнаруживаются в почвах в низких концентрациях, они формируют устойчивые комплексы с органическими соединениями и вступают в специфические реакции адсорбции легче, чем щелочные и щелочноземельные металлы.Вблизи предприятий естественные фитоценозы предприятий становятся более однообразными по видовому составу, так как многие виды не выдерживают повышения концентрации тяжелых металлов в почве. Количество видов может сокращаться до 2-3, а иногда до образования моноценозов.В лесных фитоценозах первыми реагируют на загрязнения лишайники и мхи. Наиболее устойчив древесный ярус. Однако длительное или высокоинтенсивное воздействие вызывает в нем сухостойкие явления.Восстановление нарушенного почвенного покрова требует длительного времени и больших капиталовложений.

Особенно трудной задачей является восста­новление растительного покрова на отвалах вскрышных пород и хвостохранилищах (хвостах) выработок, где добывались руды металлов: такие хвосты обычно бедны элементами питания, бога­ты токсичными металлами и слабо удерживают воду. Серьезной проблемой для окружающей сре­ды является ветровая эрозия рудниковых отва­лов.

Нормирование содержания тяжелых металлов в почве

Нормирование содержания тяжелых металлов в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимических свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. Имеются противоречивые данные даже о фоновом содержании некоторых металлов. Приводимые исследователями результаты различаются иногда в 5-10 раз.


Предложено множество шкал экологического нормирования тяжелых металлов. В некоторых случаях за предельно допустимую концентрацию принято самое высокое содержание металлов, наблюдаемое в обычных антропогенных почвах, в других - содержание, являющееся предельным по фитотоксичности. В большинстве случаев для тяжелых металлов предложены ПДК, которые превосходят реально допустимые значения концентраций металлов в несколько раз.

Для характеристики техногенного загрязнения тяжелыми металлами используется коэффициент концентрации, равный отношению концентрации элемента в загрязненной почве к его фоновой концентрации.

В таблице 1 приведены официально утвержденные ПДК и допустимые уровни их содержания по показателям вредности. В соответствие с принятой медиками-гигиенистами схеме нормирование тяжелых металлов в почвах подразделяется на транслокационное (переход элемента в растения), миграционное водное (переход в воду), и общесанитарное (влияние на самоочищающую способность почв и почвенный микробиоценоз).

S. Donahue - Загрязнение почв тяжелыми металлами Почво-грунты являются одним из важнейших компонентов сельскохозяйственной и городской среды, и в обоих случаях разумное управление является ключом к качеству почвы. Эта серия технических примечаний рассматривает техногенную деятельность человека, которая вызывает деградацию почв, а также методы управления, которые защищают городские почвы. Данная техническая записка посвящена загрязнению почвы тяжелыми металлами

Металлы в почве

Добыча, производство и использование синтетических веществ (например, пестициды, краски, промышленные отходы, бытовые и промышленные воды) может привести к загрязнению городских и сельскохозяйственных земель тяжелыми металлами. Тяжелые металлы также встречаются в природе, но редко в токсичных количествах. Потенциальное загрязнение почвы могут образоваться на старых свалках (особенно на тех, которые используются для промышленных отходов), в старых садах, на которых использовали пестициды, содержащие мышьяк в качестве активного ингредиента, на полях, которые в прошлом применялись под сточные воды или муниципальные осадки, в районах или вокруг горных отвалов и хвостохранилищ, промышленных районах, где химические вещества, возможно, были сброшены на землю в районах с подветренной стороны промышленных объектов.

Избыточные накопления тяжелых металлов в почвах является токсичным для человека и животных. Накопление тяжелых металлов, как правило, хроническое (воздействие в течение длительного периода времени), вместе с пищей. Острое (немедленное) отравления тяжелыми металлами происходит при проглатывании или кожном контакте. Хроническими проблемами, связанными с долгосрочным воздействием тяжелых металлов являются:

  1. Свинец - психические расстройства.
  2. Кадмий - влияет на почки, печень и желудочно-кишечный тракт.
  3. Мышьяк - кожные заболевания, влияет на почки и центральную нервную систему.

Наиболее распространенными катионными элементами являются ртуть, кадмий, свинец, никель, медь, цинк, хром и марганец. Наиболее распространенными анионными элементами - мышьяк, молибден, селен, бор.

Традиционные способы восстановления загрязненных почв

Методы рекультивации почв и сельскохозяйственных культур может помочь предотвратить попадание загрязняющих веществ в растения, оставляя их в почве. Данные методы рекультивации не приведут к удалению тяжелых металлов загрязняющих веществ, но поможет для иммобилизации их в почву и уменьшить вероятность негативного последствия металлов. Обратите внимание, что вид металла (катион или анион) необходимо учитывать:

  1. Увеличение рН почвы до 6,5 или выше. Катионные металлы более растворимы на более низких уровнях рН, поэтому повышение рН делает их менее доступными для растений и, следовательно, менее вероятно, будут включены в ткани растений и попадут в организм человека. Повышение рН имеет противоположный эффект на анионные элементы.
  2. Слив во влажных почвах. Дренаж улучшает аэрацию почвы и позволит металлам окислятся, что делает их менее растворимыми и доступными. Обратное свойство будет наблюдаться для хрома, который является более доступным в окисленной форме. Активность органического вещества эффективно в снижении доступности хрома.
  3. . Применение фосфатов. Применения фосфатов может привести к снижению доступности катионных металлов, но иметь противоположный эффект на анионных соединениях, таких как мышьяк. Применять фосфаты нужно разумно поскольку высокий уровень фосфора в почве может привести к загрязнению воды.
  4. Тщательный подбор растений для использования на металлически загрязненных почвах Растения перемещают большое количество металлов в листьях, нежели их плоды или семена. Наибольший риск заражения пищевых продуктов в цепочке листовые овощи (салат или шпинат). Другой опасностью является поедание этих растений скотом.

Установки для экологической очистки

Исследования показали, что растения эффективны в очистке загрязненных почвы (Венцель и соавт., 1999). Фиторемедиация это общий термин использования растений для удаления тяжелых металлов или для содержания почвы в чистом состоянии, без загрязняющих веществ, таких как тяжелые металлы, пестициды, растворители, сырая нефть, полициклические ароматические углеводороды. Например, степной травы могут стимулировать распад нефтепродуктов. Полевые цветы были недавно использованы для деградации углеводородов от разлива нефти в Кувейте. Гибридные виды тополей могут удалить химические соединения, такие как TNT, а также как высокое содержание нитратов и пестицидов (Brady и Weil, 1999).

Растения для обработки металлически загрязненных почв

Растения были использованы для стабилизации и удаления металлов из почвы и воды. Используется три механизма: фитоэкстракция, ризофильтрация и фитостабилизация.

Данная статья рассказывает о ризофильтрации и фитостабилизации, но основное внимание уделет фитоэкстракции.

Ризофильтрация - это адсорбция на корнях растений или поглощения корнями растений загрязнителей, которые находятся в окружающих корневую зону растворах (ризосфере).

Ризофильтрация используется для обеззараживания подземных вод. Растения, выращивают в теплицах. Загрязненная вода используется для акклиматизации растений в окружающей среде. Затем, эти растения высаживаются на месте загрязненных грунтовых вод, где корни фильтруют воды и загрязняющие вещества. Как только корни насыщаются загрязненными веществами, растения собирают. В Чернобыле, таким образом был использован подсолнечник, для удаления радиоактивных веществ в подземных водах (EPA, 1998)

Фитостабилизация - это использование многолетних растения для стабилизации или иммобилизации вредных веществ в почве и грунтовых водах. Металлы поглощаются и накапливаются в корнях, адсорбируются на корнях, или осаждаются в ризосфере. Также данные растения могут быть использованы для восстановления растительности, в местах, где не хватает естественной растительности, тем самым уменьшая риск водной и ветровой эрозии и выщелачивания. Фитостабилизация снижает подвижность загрязняющих веществ и предотвращает дальнейшее движение загрязненных веществ в грунтовые воды или воздух, и снижает попадание их в пищевые цепи.

Фитоэкстракция

Фитоэкстракция - это процесс выращивания растений в металлически загрязненной почвы. Корни перемещают металлы в надземные части растений, после чего эти растения собирают и сжигают или компостируют для переработки металлов. Несколько циклов роста сельскохозяйственных культур могут быть необходимы для уменьшения уровня загрязнения в допустимых пределах. Если растения сжигают, золу нужно утилизировать на свалках отходов.

Растения выращивающиеся для фитоэкстракции называют гипераккумуляторами. Они поглощают необычно большое количество металла по сравнению с другими растениями. Гипераккумуляторы могут содержать около 1000 миллиграмм на килограмм кобальта, меди, хрома, свинца, никеля, и даже 10 000 миллиграммов на килограмм (1%) марганца и цинка в сухом веществе (Baker и Брукс, 1989).

Фитоэкстракция проще для таких металлов, как никель, цинк, медь, потому что эти металлов предпочитают большинство из 400 растений гипераккумуляторов. Некоторые растения из рода Thlaspi (pennycress), как известно, содержат около 3% цинка в тканях. Эти растения можно использовать в качестве руды в связи с высокой концентрацией металла (Брэди и Вейля, 1999).

Из всех металлов, свинец является наиболее распространенным загрязнителем почвы (EPA, 1993). К сожалению, растения не накапливают свинец в природных условиях. Такие хелаторы, как ЭДТА (этилендиаминтетрауксусной кислоты) должны быть добавлены к почве. ЭДТА позволяет растениям извлекать свинец. Наиболее распространенным растением, используемым для извлечения свинца является индийская горчица (Brassisa juncea). Phytotech (частная исследовательская компания) сообщила, что они очистили плантации в Нью-Джерси, под промышленными стандартами с 1 по 2, при помощи индийской горчицы (Wantanabe, 1997).

Растения могут удалять цинк, кадмий, свинец, селен и никель из почвы на проектах, которые являются средне и долгосрочно перспективными.

Традиционная очистка на территориях может стоить от $ 10.00 и $ 100.00 за кубический метр (м3), в то время как удаление загрязненных материалов может стоить от $ 30.00 до $ 300 / м 3. Для сравнения, фитоэкстракция может стоить $ 0,05 / м3 (Watanabe, 1997).

Перспективы на будущее

Фиторемедиация была изучена в процессе исследования малых и полномасштабных приложений. Фиторемедиация может переместиться в сферу коммерциализации (Watanabe, 1997). Прогнозируется, что фиторемедиации рынка достигнет $ 214 до $ 370 млн. к 2005 году(Environmental Science & Technology, 1998). Учитывая нынешнюю эффективность фиторемедиации лучше всего подходит для очистки более широких областей, в которой загрязнители присутствуют в низких и средних концентрациях. Перед полной коммерциализацией фиторемедиации, необходимы дальнейшие исследования, чтобы удостоверится, что ткани растений, используемых для фиторемедиации не имеют неблагоприятного воздействия на окружающую среду, дикой природы или на человека (EPA, 1998). Исследования также необходимы, чтобы найти более эффективные биоаккумуляторы, которые производят больше биомассы. Существует необходимость для коммерческого извлечения металлов из растительной биомассы, так они могут быть переработаны. Фиторемедиация медленнее, чем традиционные методы удаления тяжелых металлов из почвы, но гораздо дешевле. Предупреждение загрязнения почвы намного дешевле, нежели исправление катастрофических последствий.

Список использованной литературы

1.Baker, A.J.M., and R.R. Brooks. 1989. Terrestrial plants which hyperaccumulate metallic elements - a review of their distribution, ecology, and phytochemistry. Biorecovery 1:81:126.
2. Brady, N.C., and R.R. Weil. 1999. The nature and properties of soils. 12th ed. Prentice Hall. Upper Saddle River, NJ.
3. Environmental Science & Technology. 1998. Phytoremediation; forecasting. Environmental Science & Technology. Vol. 32, issue 17, p.399A.
4. McGrath, S.P. 1998. Phytoextraction for soil remediation. p. 261-287. In R. Brooks (ed.) Plants that hyperaccumulate heavy metals their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, NY.
5. Phytotech. 2000. Phytoremediation technology.







2024 © winplast.ru.